
SEL-89-007

PROCEEDINGS OF THE FOURTEENTH ANNUAL

SOF'rWARE ENGINEERING WORKSHOP

November 29, 1989

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

IF

_ _, _ _k_ _ __ iiii__ _ _. ,

|

i-

1Writ

D

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the

National Aeronautics and Space Administration/Goddard Space Flight Center

(NASA/GSFC) and created for the purpose of investigating the effectiveness of

software engineering technologies when applied to the development of applications

software. The SEL was created in 1977 and has three primary organizational

members:

NASA/GSFC, Systems Development Branch

The University of Maryland, Computer Sciences Department

Computer Sciences Corporation, Systems Development Operation

The goals of the SEL are (1) to understand the software development process in

the GSFC environment; (2) to measure the effect of various methodologies, tools,

and models on this process; and (3) to identify and then to apply successful devel-

opment practices. The activities, findings, and recommendations of the SEL are

recorded in the Software Engineering Laboratory Series, a continuing series of

reports that includes this document.

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

QO

579,_I[._._'I'IENTION ALLY iN,NiL

o,,

111

PRECEDING PAGE BLANK NOT FILMED

i

i

li

AGENDA

FOURTEENTH ANNUAL SOFI'WARE ENGINEERING WORKSHOP

NASA/GODDARD SPACE FLIGHT CENTER

BUILDING 8 AUDITORIUM

NOVEMBER 29, 1989

Summary of Presentations

R. W. Kester (CSC)

Session 1

Topic: Studies and Experiments in the SEL

The Experience Factory: Packaging Software Experience

V.R. Basili (University of Maryland)

Experiences in the SEL - Applying Software Measurement

F.E. McGarry (NASA/GSFC)

S.R. Waligora and T.P. McDermott (CSC)

Evaluation of the Cleanroom Methodology in the SEL

A. Kouchakdjian and V.R. Basili (University of Maryland)

S. Green (NASA/GSFC)

Session 2

Topic: Methodologies

Predicting Project Success from the Software Project Management Process: An Explora-

tory Analysis

M.S. Deutsch (Hughes Aircraft Co.)

A Software Environment: Some Surprising Empirical Results

B.I. Blum (APL)

Measurement Based Improvements of Maintenance in the SEL

H.D. Rombach and B.T. Ulery (University of Maryland)

J.D. Valett (NASAJGSFC)

V

PRECEDING PAGE BLANK NOT FILMED

AGENDA (Cont'd)

Session 3

Topic: Software Reuse

Software, System, and Application Uncertainty and Its Control Through the Engineering
of Software

M. Lehman (Imperial College)

Testing in a Reuse Environment - Issues and Approaches

J.C. Knight (University of Virginia)

Domain-Directed Reuse

C. Braun and R. Prieta-Diaz (Contel)

Using Reverse Engineering and Hypertext to Document an Ada Language System

K. Thackrey (Planning Analysis Corporation)

Session 4

Topic: Testing and Error Analysis

Classification Tree Analysis Using the Amadeus Measurement and Empirical Analysis

System

R.W. Selby, G. James, K. Madsen, J. Mahoney, A.A. Porter, and D.C. Schmidt

(U. C. Irvine)

The Jet Propulsion Laboratory's Experiences with Formal Inspections

M. Bush and J. Kelly (JPL)

The Enhanced Condition Table Methodology for Verification of Fault Tolerant and Other

Critical Software

M. Hecht, K.S. Tso, and S. Hochhauser (SoHaR, Inc.)

Appendix A - Attendees

h_

_ffi

Appendix B - Standard Bibliography of SEL Literature

5794

vi

SUMMARY OF PRESENTATIONS

Rush Kester, Computer Sciences Corporation

5794

ID

__i

IL_ll

E

SUMMARY OF THE FOURTEENTH ANNUAL SOFTWARE

ENGINEERING WORKSHOP

On November 29, 1989, approximately 450 attendees gathered in Building 8 at the

National Aeronautics and Space Administration (NASA)/Goddard Space Flight

Center (GSFC) for the Fourteenth Annual Software Engineering Workshop. The

meeting is held each year as a forum for information exchange in the measure-

ment, utilization, and evaluation of software methods, models, and tools. It is

sponsored by the Software Engineering Laboratory (SEL), a cooperative effort of

NASA/GSFC, Computer Sciences Corporation (CSC) and the University of

Maryland. Among the audience were representatives from 10 universities, 22 gov-

ernment agencies, 9 NASA centers, and 83 private corporations and institutions.

Thirteen papers were presented in four sessions:

• Studies and Experiments in the SEL

• Methodologies

• Software Reuse

• Testing and Error Analysis

SESSION 1 - STUDIES A_ND EXPERIMENTS IN .THE SEL

Frank McGarry of GSFC opened the workshop, welcomed attendees, and intro-

duced the first speaker. The first presentation "Packaging Experience for an Im-

proved Process" was given by Victor Basili of the University of Maryland. Basili

indicated that a major purpose of the SEL has been evaluating different technolo-

gies and methods of software development and providing feedback to project man-

agers for improving the process.

SEL studies have been guided by the Goal/Question/Metric paradigm and its corol-

lary, the Improvement paradigm. Each study determines how best to package

experiences for most effective reuse. Reuse of experiences, to date, have generally

been adhoc and informal. However, to maximize the benefit to the organization,

more formality is needed. One problem has been that the goal of projects is to

produce their own items, not to capture, generalize, and communicate experiences

to other projects for reuse.

5794

R. Kesler
CSC

1 of 10

PRECEDING PAGE BLANK NOT FILMED

Part of the solution, Basili stated, is the creation of an organization, "the experi-

ence factory," whose goal is to facilitate transferring experience and products from

producer projects to reuser projects. The raw materials for this factory are plans,

models, products, status, and lessons learned collected throughout each project's

life cycle. These inputs are processed by the factory and, as appropriate, stored in

an experience base or discarded. The experience factory produces feedback of

comparative project status and reusable items from the experience base. Where it

is not possible to provide automated support, the factory can provide consulting

services

Basili believes almost every type of experience can be packaged for reuse. One

major issue is how the "experience factory" should be funded. Whether treated as

overhead or a cost center, over time it should pay for itself within the organization

by improvements in the process or products. Basili ended with the good news that

an organization can start small and expand its experience factory as managers

understand how best to serve the organization.

The second speaker, Frank McGarry, presented "Experiences in the SEL Applying

Software Measurement." The projects developed (in the Flight Dynamics environ-

ment) are medium sized (80K to 100K source lines of code (SLOC)) and average 2

years in duration. Most development is in FORTRAN with 10-15 percent in Ada.

Over the past 14 years, the SEL has collected data including cost, error, product,

methodology, and tools on over 75 projects. There are four areas where the SEL

applies the data collected: understanding the development environment, managing

current projects, planning future projects, and providing rationale for adopting

standards and methodology.

McGarry stated that the first application of data collection, understanding the envi-

ronment, helps the organization identify its strengths and weaknesses and start

building models of the development process. For example, the SEL has found that

the distribution of effort according to milestones differs somewhat between

FORTRAN and Ada. However, there is little difference in distribution of effort by

type of activity. This similarity is due to the significance of environmental factors

that change very slowly.

McGarry used the error model as an example of the second application of data

collection for managing current projects. By monitoring errors during the code and

5794

R. Kester
CSC
2 of 10

I
i

test phase compared to prior projects, a manager can determine whether the

project's performance was typical or required remedial management actions.

Measurement of computer utilization can also be applied to help manage projects.

For instance, a manager observing abnormally low usage could upon further inves-

tigation uncover problems with lack of requirements definition or resource avail-

ability.

The third application of data collection is for planning future projects. Without

data collected from prior projects, an organization cannot make plans that reflect

its way of doing business. Using models developed from historical data, the SEL

can, given an estimate of project size, predict the effort or cost for the project and

its allocation to the phases of the life cycle. In addition, collected data have been

used to develop other rules-of-thumb relations among various measures.

The fourth application of data collection McGarry described is to provide rationale

for adopting new methodologies or standards. This Improvement paradigm closes

the loop on the measurement process. For example, measurement of software

reuse during experiments with Object-Oriented Development (OOD) has lead the

SEL to incorporate OOD in its development methodology. Data collected during

other experiments has enabled the SEL to put aside unsuccessful tools or methods.

In wrapping up, McGarry pointed to the measurable improvements in the SEL's

software productivity and reliability over time as evidence of the benefit of data

collection in the evolution of standards and methodology.

The final speaker in the first session, Ara Kouchakdjian from the University of

Maryland, presented "Evaluation of the Cleanroom Methodology in the SEL." The

Cleanroom method was conceived at IBM with a goal of producing correct code the

first time. The emphasis is on the use of human evaluation rather than computer

debugging to verify software. The Cleanroom discipline is characterized by the

complete separation of coders and testers. The importance of correctness is em-

phasized by not allowing development to proceed from design to code or from

code to test until all reviewers were convinced of the product's correctness.

Kouchakdjian described the project used in the Cleanroom experiment as a

33 thousand SLOC production subsystem. The project was staffed by five in-

dividuals spending about half-time on the project. None of the team had prior

5794

R. Kester
CSC
3 of 10

experience using the Cleanroom methodology or on this specific type of applica-

tion. Following 1 month of Cleanroom training, the project has taken 22 months

and is currently completing system test. The effort that remains is integration with

the rest of the system and acceptance testing.

The Cleanroom project was compared to the typical SEL project by Kouchakdjian.

The Cleanroom project spent 10 percent more of its total effort in design and

2-3 percent less in code and test than the typical SEL project. During coding the

Cleanroom project spent 52 percent of its time reading code versus 15 percent for

typical SEL projects. The error rate for the Cleanroom project was 2.7 per 1000

SLOC versus 6.0 for typical projects. Of the Cleanroom project's errors, 33 per-

cent were found during code reviews and 54 percent during code reading. The

productivity of the Cleanroom project was 4.9 SLOC per staff-hour versus 2.9

typical in the SEL environment. From these results, Kouchakdjian concluded that

the Cleanroom methodology appears promising, but further work is needed.

SESSION 2 - METHODOLOGIES

Michael Deutsch of Hughes Aircraft _presented '_'Predicting Project Success from

the Software Project Management Process: An Exploratory Analysis." The goal of

this study was to identify, empirically, the project management factors that most

strongly correlate with project success and those factors that best discriminate be-

tween success and failure. This study proposed a hypothetical model of project

success in which project adversity factors such as size, interfaces, business, and

technical constraints combine with management power factors such as resources,

scope definition, risk management, planning, and user/customer/contractor dia-

logue to form "Net Turbulence." This "Net Turbulence" parameter determines a

project's business and/or technical performance.

In the study, an informal questionnaire was given to available project managers

and senior engineers on 25 completed projects. The projects ranged in size from

25 thousand to 2 million SLOC. The study found that the overall perception of

project success was based on business rather than technical performance, with a

threshold between perceived success and failure being a 25 to 50 percent overrun

and a 3 to 6 month schedule slip. Deutsch asserted that the driving factor in

determining the degree of project success is the degree to which the user/customer/

5794

R. Kester
CSC
4 of 10

B

F

!

R

=

k_

k_

_.=-

contractor dialogue produced a mutual agreement that the right problem was being

solved.

Deutsch indicated that factors most highly correlated with project success con-

firmed management theory and anecdotes. One surprising finding was the strength

of "engineering and application expertise of the initial maintenance team" in deter-

mining the success of all projects. This factor ranked first in its correlation with

Business Performance and second in its correlation with Technical Performance.

Deutsch closed with an example that pointed out the potential practical value of

the "Net Turbulence" model. The model identified adversity factors that by them-

selves might lead to project failure but, when coupled with application of appropri-

ate management power factors, often lead to project success.

The second speaker of this session, Bruce Blum of the Applied Physics Laboratory,

presented "A Software Environment, Some Surprising Empirical Results." Blum

presented observations of information systems development using a program gen-

erator as indicative of how the software process might behave if programming

were eliminated. In this environment, systems would be developed by users, or a

small staff of applications experts, and would continually evolve along with user

needs. The primary system used in the study was the clinical information system

used for cancer treatment at Johns Hopkins University. The size of the system in

1988 was 6600 programs and 1600 tables, containing 600,000 patient-days of data.

Looking at the growth of the system Blum found it fairly steady, whether the sys-

tem was newly ddveloped or mature. This was due to the insatiable nature of

users. After 5 years of use, one-third of the programs and tables are new. By

comparison, while one-third of the programs had been edited, only 7 percent of the

tables required editing, indicating greater stability in the data model. Even with

this large number of changes, only a small maintenance team was required. Very

little computer experience was needed; rather, the individuals became domain ex-

perts through on-the-job training. Bium summarized by noting that with the

difficulty of system implementation removed, inherent individual differences be-

came less important to productivity and that the system became more integrated.

The last speaker of the morning sessions, H. Dieter Rombach from the University

of Maryland, presented "Measurement Based Improvement of Maintenance in the

5794

R. Kester
CSC
5 of 10

SEL." The goals of this study were to understand and characterize early mainte-

nance and, where possible, provide feedback to improve the maintenance and de-

velopment processes. This effort studied six satellite attitude systems developed in

FORTRAN using'the standard SEL met'hodology. The systems ranged in size from

37 to 235 thousand SLOC and their development efforts from 3 to 28 staff-years.

The data used in this study were collected from weekly activity reports, change

reports, and subjective interviews witl_ maintenance personnel.

In analyzing the types of requests for software changes, Rombach found that while

53 percent were for error corrections, this represented only 27 percent of the effort

(slightly less than one-half that required per adaptati0n or enhancement request).

The study found no obvious correlation whereby the maintenance effort could be

predicted from the development effort or system size. Not surprisingly, the study

found that changes during maintenance required more time than changes during

development. However, it was surprising to find that this increase was due more

to increased effort to implement and integrate the change than to increased effort

to isolate the problem.

Based on interviews with maintenance personnel, Rombach found that the subject

software was poorly suited to maintenance needs in the following ways: (1) pro-

gram design language (PDL) is redundant with code and inconsistencies just added

confusion, (2) specification of the same information in multiple locations leads to

incomplete changes, and (3) debug output of the form "variable = value" requires

too much familiarity with the code. In closing, Rombach indicated that future

studies will focus on extended maintenance data for these systems and early main-

tenance of Ada systems.

SESSION 3 - SOFTWAR]_ REUSE

In a more philosophical vein, Marmy Lehman of Imperial College presented "Un-

certainty in Computer Applications." Computer programs can be classified as one

of three types: (1) those completely defined by a specification, (2) those whose

solution need not be exact but merely close enough for a specific problem, and

(3) those that fulfill an application in the real world and whose success is based on

user satisfaction. This third type of program was the focus of this talk.

5794

R. Kester
CSC
6 of 10

g

m

b

Z

i

t_

Lehman stated that real world applications continually evolve because the real

world changes and the user's needs change. Software maintenance is the means of

achieving this evolution. What is maintained is the level of user satisfaction and

the validity of assumptions embedded in the program. Lehman estimated that one

assumption about the real world is embodied in every 10 SLOC. Some of these

assumptions were probably questionable from the start while others were initially

valid but become invalid over time. As a result, execution of real world applica-

tions involves some uncertainty and risk.

Minimizing the risk due to the presence of uncertain assumptions, Lehman con-

cluded, is a professional responsibility. To accomplish this, the software process

must (1) carefully document all assumptions (explicit and implicit) and (2) peri-

odically review assumptions to ensure they continue to be correct and appropriate.

Next John Knight, from the University of Virginia, presented "Testing in a Reuse

Environment - Issues and Approaches." Testing of parts for a reuse library pre-

sents some unique challenges. Testing a part for one application and testing for

every possible application is significantly different. This additional testing is justi-

fied, provided its cost can be amortized by future instances of reuse.

Knight presented several interesting approaches to testing adaptable parts, such as

Ada generics. Where the design of the part restricts the allowable range of pa-

rameters or relations between parameters, these restrictions can be validated by

the code itself. Where a broad range of parameters is allowed, a program genera-

tor could be created to test the adaptable part across this domain. Where generic

parameters are executable subprograms that must provide specific semantics, vali-

dation cannot generally be automated. Rather, the designer of the adaptable part

should write a specification for the subprogram and define a test procedure for its

validation.

In conclusion, Knight stated that while reuse can have a significant impact on

testing, it doesn't make testing any easier, as some economic models assume.

However, if one is careful, perhaps the total resources expended can be reduced.

Chris Braun, from Contel, spoke next on "Domain-Directed Reuse." Domain-

directed reuse is an approach that combines top-down generative reuse with bot-

tom-up compositional reuse. Generative reuse is an approach whereby systems are

5794

R. Kester
CSC

7 of 10

!

generated automatically by specifying a set of parameters that tailor a given

architecture, e.g., a program generator. Compositional reuse occurs when compo-

nents are selected from a library and used to build a system.

The system envisioned by Braun is one that presents the user with a graphic repre-

sentation of a standard architecture for a given applicmion domain, e.g., Com-

mand, Control, and Communications. For each level in the architecture, its

building blocks are represented. Where components exist for a given building

block, the user may select one from the component library. Where no appropriate

component exists, the user builds one from scratch or by assembling suitable exist-

ing components from lower levels. This new component must conform to the

interface and functional requ!rements requi_red by the standard architecture. In

this way, the user would be guided through the design process. Braun concluded

by predicting significant 10ng-term gains in effective productivity for system devel-

opment utilizing domain-directed reuse. _: _

The final speaker of this session, Kent Thackrey from Planning Analysis Corpora-

tion, presented "Using Reverse Engineering and Hypertext to Document an Ada

Language System." When asked to document an existing system (650 modules,

40,000 SLOC), rather than deliver an estimated 2500 pages of documentation, this

project deveioped interactive documentation using hypertext. Users could traverse

the system, moving up or down the call tree, viewing module descriptions. By

pressing a special key, the module's source code was displayed. If the module

generated a screen or accessed a file, the screen layout or record descriptions

could be viewed by pressing other special keys.

Thackrey estimated that 60-70 percent of the documentation was automatically

generated by parsing the source. The remaining information was derived by manu-

ally reverse engineering the system. The hypertext documentation met the custom-

er's standards and was well-received and heavily used by the maintenance

personnel. However, the hypertext documentation has not been maintained along

wi_ the . system and is becoming les s useful, a situation that could be remedied by

better training and automated procedures for maintaining the hypertext

documentation. Thackrey closed by describing enhancements to the hypertext

documentation structure that he felt would extend its usefulness not only for sys-

tem maintenance but for navigation of a reuse library.

5794

R. Kesler
CSC"

8 of 10

Q

g

g

E

W

=_

SESSION 4 - TESTING AND ERROR ANALYSIS

Richard Selby, from the University of California at Irvine, presented "Classifica-

tion Tree Analysis Using the Amadeus Measurement and Empirical Analysis Sys-

tem." The Amadeus System, which is currently being prototype'd, provides the

conceptual framework for instrumenting a software development environment. A

software development environment that provides the required Amadeus interfaces

will allow automatic measurement and monitoring of the development process or

its objects. The focus of this presentation was Selby's experience using metrics-

based classification trees.

The goal of classification tree analysis, Selby stated, is to identify automatically

that small portion of a system's components that is likely to account for a dispro-

portionately high amount of its cost, and, thus, focus management attention on

development resources. Classification trees can be defined using any combination

of nominal, ordinal, interval, or ratio metrics. Software to assist in the generation

of classification trees from empirical data was studied in trials at GSFC and

Hughes. Selby concluded that these proof of concept studies, which sought to iden-

tify high-cost and error-prone modules, have demonstrated that the automatic gen-

eration of classification trees has merit.

The next speaker, Marilyn Bush of the Jet Propulsion Laboratory (JPL), presented

"The Jet Propulsion Laboratory's Experiences with Formal Inspections." Formal

inspections at JPL are based on the technique published by Michael Feigan of IBM

in 1976. Inspections are designed to find, document, fix, and verify defects as

early in the life cycle as possible. At JPL inspections span the life cycle, starting

with system requirements through test procedures. The inspection process is the

same throughout and includes preparation, overview, the actual inspection meet-

ing, rework, and verification.

Bush described inspections as lead by a trained moderator with 3 to 6 peer inspec-

tors who have a vested interest in the product. Each inspector completes a well-

defined checklist specific to the product and phase before the inspection meeting.

The material for an inspection is limited (about 40 pages or 600 SLOC) so that the

meeting lasts no more than 2 hours. The average inspection at JPL consumed

about 28 staff-hours and found 16 defects, including 4 defects that would have

R. Kester
CSC
9 of 10

5794

prevented the system from operating correctly. Bush estimated that each inspec-

tion saved JPL about $25,000.

Bush credited training as essential to the success of inspections at JPL. JPL devel-

oped a 2-hour course for managers that stressed the value of inspections and a

1.5-day course for inspectors and moderators that described the inspection process

and its benefits, and included a simulated inspecfi0n. In addition, support and

consultation were provided to projects during their initial use of inspections. Bush

concluded by citing some lessons learned.

The final presentation, "The Enhanced Condition Table Methodology for.Verifica-

tion of Fault Tolerant and other Critical Software," was given by Myron Hecht of

SoHaR, Inc. This technique is based on a test data selection method described by

Goodenough and Gerhart in 1975. The technique is expensive and is justified only

where severe reliability requirements exist, e.g., critical modules in a nuclear reac-

tor control system. The original technique, which was impractical for programs

over 20 lines, was enhanced in two ways. First, tools were created that automated

.......... "........ i..... " i i ' rcondition table generation and assisted m ehmmatmg don t ca e test cases. Sec-

ond, the me_0 d integrated structural testing with analysis of functional, reliability,

and safety requirements.

Hecht described an experiment using the module responsible for the node manager

functions in a highly redundant network. The module was about 150 SLOC and

contained 14 C0nditi0ns. Without the-enhanced methodl this wouid-have resulted

in 2* "14 combinations. The enhanced condition table contained 50 combinations.

The technique identified one error of omission that Hecht believes would not have

been identified by any other method. To emphasize his belief that no testing

technique by itself is sufficient, Hecht indicated that 14 additional interface and

timing errors were identified by functional testing during integration.

Hecht closed by stating that when additional tools are developed to reduce the

labor and time intensive tasks of creating test cases and test environments, this

technique will be a thorough, traceable, and effective means of performing unit

testing where certification is required.

_=
I

W

m

I

IIi

m

m
w

5794

R. Kester
csc
10 of 10

w

w

SESSION 1 -- STUDIES AND EXPERIMENTS IN THE SEL

V. R. Basili, University of Maryland

F. E. McGarry, NASA/GSFC

A. Kouchakdjian, University of Maryland

5794

J

g

!Ira

J

I

IIm

II

ql!

i

'i
b

The Experience Factory:

Packaging Software Experience

Victor R. Basili

Institute for Advanced Computer Studies

and

Department of Computer Science

University of Maryland

In order to improve software quality and productivity, we need to build

descriptive models to better understand (I) the nature of the processes and

products and their various characteristics, (2) the variations among them,

(3) the weaknesses and strengths of both, and (4) mechanisms to predict and

control them. Based upon analysis of these descriptive models, we need to

build prescriptive models that improve both the products and the methods

for developing them relative to a variety of qualities, provide feedback

for project control, and allow the packaging of successful experience. We

also need to examine the interaction among these models.

The overall solutions are technical and managerial. The technologies in-

volved include modeling, measurement and reuse.

We have been applying this basic approach for the past 14 years at NASA/GSFC

in a program called the Software Engineering Laboratory (SEL). The activities

were broken into two phases. During the first phase, we worked to understand

the environment and how to measure it. To achieve this we measured what we

could, applied whatever models existed, built baselines for such things as

defect classes and resource allocation, and developed the Goal/Question/Metric

paradigm as an organized mechanism for setting goals and measuring the

software process and product.

During this phase, we learned that although there are similarities among

software developments, the differences are what create the problems; that there

is a direct relationship between the processes performed and the various

product qualities; that measurement needs to be based upon goals and models;

and that evaluation and feedback are necessary for project control.

In phase two we worked to improve the process and product quantitatively based

upon the evolutionary development of various models. To this end, we experi-

mented with technologies, evaluated and fed back information to the project,

developed the Quality Improvement Paradigm which is a variation of the scientific

method tailored to the software domain, began formalizing process, product,

knowledge and quality models for the environment, and continued to evolve the

GQM paradigm and our various models.

During this phase, we learned that evaluation and feedback are necessary for

learning; that process, product and quality models need to be more formally

defined and tailored for the particular environment; that software development

should follow an experimental approach; that reusing experience in the form of

process, product, and knowledge is essential; and that experience needs to be

packaged.

The Improvement Paradigm consists of six steps:

V. Basili
Univ.ofMD
I of20

1. Characterize the current project environment.

2. Set up goals and refine them into quantifiable questions and metrics

for successful project performance and improvement over previous project

performances.

3. Choose the appropriate software project execution model for this

project and supporting methods and tools.

4. Execute the chosen processes and construct the products, collect

the prescribed data, validate it, and analyze the data to provide feedback

in real-time for corrective action on the current project.

5. Analyze the data to evaluate the current practices, determine

problems, record the findings and make recommendations for improvement for

future projects.

6. Package the experience in the form of updated and refined models

and other forms of structured knowledge gained from this and previous projects,

and save it in an experience base so it can be available to the next project.

The Improvement Paradigm necessitates support for systematic learning and

reuse. Systematic learning requires support for the recording of experience,

off-line generalizing or tailoring of experience, and the formalization of

experience. Systematic reuse requires support for using existing experience

and on-line generalizing and tailoring of candidate experience. Both learning

and reuse need to be integrated into an overall evolution model that supports

them as formal activities.

Reuse has been an elusive for software development. This is due to a number

of factors. First, reuse needs to be defined as more than just the code

level; emphasis on code only limits the context of reuse. Our model covers

the reuse of all forms of experience, e.g., all forms of products and processes.

In the past, reuse of experience has been too informal and not fully incorporated

into the software evolution model. It has been assumed that reuse means using

as is. Actually, most experience needs to be modified in some way. There

need to be support mechanisms for this modification process. To make reuse

easier, experience needs to be packaged. It also needs to be analyzed for its

potential for reuse before being offered as reusable. Lastly, the development

and packaging of reusable experience was expected to take place as part of the

project development. Clearly, this is very difficult since the project focus

is delivery, not reuse.

For these reasons, we propose the concept of an Experience Factory, which is

distinct from the project organization in that it packages experience by

building informal, formal or schematized, and productized models and measures

of various software processes, products, and other forms of knowledge via

people, documents, and automated support. As such, the Experience Factory

supports project development by analyzing and synthesizing all ki,ds of

experience, acting as a repository of such experience, and supplying that

experience to projects on demand.

l

.=

m

J

g

z
i

B

=

V. Basili

Univ. of MD

2 of 20 J

-3-

The Experience Factory is a logically and/or physically separate organization

for the project development organization. This is necessary because the

Experience Factory and Project Organizations have different focuses and

priorities, and require different process models and expertise requirements.

There are a variety of different experiences that can be packaged. These

consist of process models, the results of method and techniques evaluation,

resource baselines and models, change and defect baselines and models, product

baselines and models, and products and product parts themselves.

The benefits of the concept of an Experience Factory are: the separation of

concerns from project development, the support for learning and reuse, the

generation of a tangible corporate asset, and the formalization of management

and development technologies. To build an Experience Factory, an organization

can start small by packaging those things it knows well and building via

measurement and models to larger bodies of knowledge. The concept of an

Experience Factory allows us to focus research on the understanding and pack-

aging of those pieces of experience that will aid projects the most.

Aside from the packaging of experience, the Experience Factory can incorporate

other activities such as quality assurance, education and training, and

consulting activities. Funding for the Factory should be a separate cost

center and can come from corporate overhead or projects can be billed for

packages of experience.

In conclusion, combining the concepts of the Improvement Paradigm, the
Goal/Question/Metric Paradigm, and the Experience Factory organization provides

a framework for software engineering development, maintenance, and research

that supports the improvement of quality and productivity in an organized way.

It takes advantage of the experimental nature of software engineering and

allows us to understand how software is built and focused on the problems,

define and formalize models of process and product with respect to success

criteria, and feed back packaged experience to current and future projects for
reuse.

V. BasiU
Univ. of MD
3 of 20

D

i

l

U

J

!

I

lw

EE
m
R

|

mE
E

|

|

w_

iP

W

m

i

VIEWGRAPH MATERIALS

FOR THE

V. BASIL! PRESENTATION

5794

u

L

I

El

I

i

i

I

w_

F R_

w

T

m

THE EXPERIENCE FACTORY:

PACKAGING SOFTWARE EXPERIENCE

VICTOR R, BASILI

UMIACS

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF MARYLAND

V. Basili
Univ. of MD
4 of 20

J

HOH DO HE IHPROVE SOFTWARE QUALITY AND PRODUCTIVITY?

HE NEED TO

UNDERSTAND PROCESS AND PRODUCT

DEFINE PROCESS AND PRODUCT QUALITIES

EVALUATE SUCCESSES AND FAILURES

FEEDBACK FOR PROJECT CONTROL

PACKAGE SUCCESSFUL EXPERIENCES

KEY TECHNOLOGIES:

MODELING

MEASUREMENT

REUSE

WE NEED TECHNICAL AND MANAGERIAL SOLUTIONS

W

II

W

!

-Z

f

,.=

V. Basili

Univ. of MD

$ of 20 i

i

SEL EVOLUTION

EVOLVING FOR OVER 14 YEARS

PHASE I
UNDERSTAND WHAT WE COULD ABOUT THE ENVIRONMENT AND MEASUREMENT

MEASURED WHAT WE COULD

USED MODELS WHERE AVAILABLE

BUILT BASELINES AND MODELS

DEVELOPED THE GOAL/QUESTION/METRIC PARADIGM

LEARNED

- THERE ARE FACTORS THAT CREATE SIMILARITIES AND

DIFFERENCES AMONG PROJECTS

- THERE IS A DIRECT RELATIONSHIP BETWEEN PROCESS AND

PRODUCT

- MEASUREMENT NEEDS TO BE BASED ON GOALS AND MODELS

- EVALUATION AND FEEDBACK ARE NECESSARY FOR PROJECT

CONTROL

V. Basili
Univ. of MD
6 of 20

SEL EVOLUTION W

PHASE 11

IHPROVE THE PROCESS AND PRODUCT

EXPERIHENTED WITH TECHNOLOGIES

EVALUATED AND FED BACK INFORMATION TO THE PROJECT

DEVELOPED THE IHPROVEHENT PARADIGH

BEGAN FORMALIZING PROCESS, PRODUCT, KNOWLEDGE, AND

OUALITY HODELS

EVOLVED THE GOAL/QUESTION/METRIC PARAD!GH

LEARNED

EVALUATION AND FEEDBACK ARE NECESSARY FOR LEARNING

PROCESS, PRODUCT AND QUALITY HODELS NEED TO BE BETTER

DEFINED AND TAILORED

SOFTWARE DEVELOPHENT SHOULD FOLLOW AN EXPERIHENTAL

APPROACH -

REUSING EXPERIENCE IN THE FORH OF PROCESS, PRODUCT, AND

KNOWLEDGE IS ESSENTIAL

EXPERIENCE NEEDS TO BE PACKAGED

J

m

b
IB

i

l=

i

|

i

J

,==

V. Basili -
Univ. of MD
7 of 20 m

|

]MPROVERENTPARADIGM

]. CHARACTERIZE THE CURRENT PROJECT ENVIRONHENT.

11

8

o

SQ

1

SET UP GOALS AND REFINE THEM INTO OUANTIFIABLE OUESTIONS

AND METRICS FOR SUCCESSFUL PROJECT PERFORMANCE AND

IMPROVENENT OVER PREVIOUS PROJECT PERFORMANCES.

CHOOSE THE APPROPRIATE SOFTWARE PROJECT EXECUTION HODEL

FOR THIS PROJECT AND SUPPORTING METHODS AND TOOLS.

EXECUTE THE CHOSEN PROCESSES AND CONSTRUCT THE PRODUCTS,

COLLECT THE PRESCRIBED DATA, VALIDATE IT, AND ANALYZE THE

DATA TO PROVIDE FEEDBACK IN REAL-TIME FOR CORRECTIVE

ACTION ON THE CURRENT PROJECT,

ANALYZE THE DATA TO EVALUATE THE CURRENT PRACTICES,

DETERMINE PROBLEMS, RECORD THE FINDINGS AND PLAKE

RECOMMENDATIONS FOR IMPROVEMENT FOR FUTURE PROJECTS.

PACKAGE THE EXPERIENCE IN THE FORH OF UPDATED AND REFINED

HODELS AND OTHER FORMS OF STRUCTURED KNOWLEDGE GAINED

FROM THIS AND PREVIOUS PROJECTS, AND SAVE IT IN AN

EXPERIENCE BASE SO IT CAN BE AVAILABLE TO THE NEXT PROJECT.

V. Basili
Univ. of MD
8 of 20

SYSTEMATIC LEARNING AND REUSE

SYSTEMATIC LEARNING REQUIRES SUPPORT FOR

RECORDING EXPERIENCE

OFF-LINE GENERAL'IZING OR TAILORING OF EXPERIENCE

FORMALIZING OF EXPERIENCE

SYSTEHATIC REUSE REQUIRES SUPPORT FOR

USING EXISTING EXPERIENCE

ON-LINE GENERALIZING OR TAILORING OF CANDIDATE EXPERIENCE

BOTH LEARNING AND REUSE NEED TO BE INTEGRATED INTO AN

OVERALL SOFTWARE EVOLUTION MODEL

V. Basili

Univ. of MD

9 ol 20

WHY REUSE HAS BEEN A PROBLEM?

NEED TO REUSE MORE THAN CODE

REUSE OF EXPERIENCE HAS BEEN TOO INFORMAL

REUSE NOT FULLY INCORPORATED INTO THE PROCESS MODEL

EXPERIENCE NEEDS TO BE TAILORED

EXPERIENCE NEEDS TO BE PACKAGED

EXPERIENCE NEEDS TO BE ANALYZED FOR ITS REUSE POTENTIAL

PROJECT FOCUS IS DELIVERY, NOT REUSE

V. Basili
Univ. of MD
10 of 20

PROJECT ORGANIZATION

char,_=rL,e

environment

TAME Process Model

set

Soak

select

methods

&

tool=

reuse
l lrecor d

t

a

i
1
C

r

formalize

informal schemsti=ed _roduetlred

PRt ,JECT SPE(IFIC

Dc _MAIN SPE(IFIC
ii

]ENER,_ L

Experience Base

r g
e

n

e

r

a

1

J
Z

e

EXPERIENCE FACTORY

B

b

i

E

I

i

m

V. Basili

Univ. of MD
11 of 20

¶
t

i

EXPERIENCE FACTORY

LOGICAL AND/OR PHYSICAL ORGANIZATION THAT

SUPPORTS PROJECT DEVELOPMENT BY

ANALYZING AND SYNTHESIZING ALL KINDS OF EXPERIENCE

ACTING AS A REPOSITORY OF SUCH EXPERIENCE

SUPPLYING THAT EXPERIENCE TO VARIOUS PROJECTS ON DEMAND

PACKAGES EXPERIENCE BY BUILDING

INFORMAL, FORMAL OR SCHEMATIZED, AND PRODUCTIZED

MODELS AND MEASURES

OF VARIOUS SOFTWARE PROCESSES, PRODUCTS, AND

OTHER FORMS OF KNOWLEDGE

VIA PEOPLE, DOCUMENTS, AND AUTOMATED SUPPORT

V. Basili

Univ. of MD
12 of 20

EXPERIENCE FACTORY

SEPARATE ORGANIZATIONS

PROJECT ORGANIZATION

EXPERIENCE FACTORY

WHY?

DIFFERENT. FOCUS/PRIORITIES

DIFFERENT PROCESS HODELS

DIFFERENT EXPERTISE REQUIREMENTS

I

L

i

V. Basili
Univ. of MD

13 of 20

PROJECT ORGANIZATION
|lJl i i

needs and characteristics

characterizing < of pr_vious projects
needs and characteristics

(tailored to current project)

planning
<

active reuse of previous plans
for construction and analysis

plans for construction and analysis
(tailored to project characteristics)

construction plans,

[construction L +_ reuse methods,andproducts
ICa'+cor'm'+.=, i- ls

new products

I+ analy_ plans,

analysis reuse measurement tools

(track construction) collected data

feedback/learning

analysis plans (interpretation)

data from current project,

data/interpretation from

_, previous projects

feedback and

new knowledge

EXPERIENCE

FACTORY

qb_

Y

_J

V. Basili
Univ. of MD
14 of 20

PROJECT

ORGANIZATION EXPERIENCE FACTORY

products

model-

dalm

lessons lesrned

direct fcmdbsck

a I
n I
_ I

8 i

products

d&l_

lessons lesrned

models

buellneu_

tools

consulting

S
Y
n
o
u

n
e

I
8

Experience

S_Mse

formalize

tailor

generalize

V. Basili
Univ. of MD
15 of 20

WHAT KINDS OF EXPERIENCES CAN WE PACKAGE?

PROCESS MODELS

SEL/STANDARD MODEL FOR GROUND SUPPORT SOFTWARE

SEL/ADA PROCESS MODEL

SEL/CLEANROOM PROCESS MODEL

METHOD AND TECHNIQUE DEFINITION/EVALUATION

READING VS, TESTING

FUNCTIONAL VS, OBJECT-ORIENTED DESIGN

ADA VS, FORTRAN

RESOURCE BASELINES/MODELS

RESOURCE ALLOCATION MODELS

STAFFIN6

SCHEDULE

COMPUTER UTILIZATION

COST MODELS AND FACTORS

RESOURCE/FACTOR RELATIONSHIPS

TECHNOLOGY/DEFECT ANALYSIS

V. Basili
Univ, of MD
16 of 20

Ill

Kz

i

i

CHANGEANDDEFECTBASELINES/MODELS
DEFECTBASELINESBYVARIOUSCLASSIFICATIONS
CHANGEBASELINESBYVARIOUSCLASSIFICATIONS
TECHNOLOGY/DEFECTANALYSESHODELS
DEFECTPREDICTIONMODELS

PRODUCT BASELINES/HODELS

GROWTH/CHANGE HISTORIES/ESTIHATION

SIZE/CHARACTERISTIC HISTORIES/ESTIHATION

TEST COVERAGE

REUSE TRADEOFFS

z

e

_=

i

R

i
|

PRODUCTS

APPROPRIATELY "PARAHETERIZED n CODE COHPONENTS

DESIGNS

SPECIFICATIONS

REQUIREHENTS

TEST PLANS

=

L_

V. Basili

Univ. of MD

17 of 20

L_

|

IMPLICATIONS

SEPARATION OF CONCERNS/FOCUS

SUPPORT FOR LEARNING AND REUSE

GENERATES A TANGIBLE CORPORATE ASSET

FORMALIZATION OF MANAGEMENT AND DEVELOPMENT TECHNOLOGIES

CAN START SMALL AND EXPAND

LINKS FOCUSED RESEARCH WITH DEVELOPMENT

V. Basill
Univ. of MD
18 of 20

IMPLICATIONS

CONSOLIDATIONOF ACTIVITIES

PACKAGED EXPERIENCE

CONSULTING

OUALITY ASSURANCE

EDUCATION AND TRAINING

FUNDING ISSUES

SEPARATE COST CENTERS

CORPORATE OVERHEAD

PROJECT BILLED FOR PACKAGES

V. Basili
Univ. of MD
19 of 20

CONCLUSIONS

COMBINING THE

IMPROVEMENT PARADIGM

GOAL/QUESTION/METRIC PARADIGM

EXPERIENCE FACTORY ORGANIZATION

PROVIDES A FRAMEWORK FOR SOFTWARE ENGINEERING DEVELOPMENT,

MAINTENANCE, AND RESEARCH

TAKES ADVANTAGE OF THE EXPERIMENTAL NATURE OF SOFTWARE

ENGINEERING

BASED UPON OUR SEL EXPERIENCE

HELPS US

UNDERSTAND HOW SOFTWARE IS BUILT AND WHERE PROBLEMS

ARE

DEFINE AND FORMALIZE MODELS OF PROCESS AND PRODUCT

EVALUATE PROCESS AND PRODUCT WITH RESPECT TO SUCCESS

CRITERIA

FEEDBACK TO CURRENT AND FUTURE PROJECTS

PACKAGE AND REUSE SUCCESSFUL EXPERIENCE

CAN BE APPLIED NOW AND EVOLVE WITH TECHNOLOGY IN A

NATURAL WAY

V. Basili
Univ. of MD
20 of 20

J

|

i

k

I

I

g

E

IE

I

z

I

r_

i

EXPERIENCES IN THE SOFTWARE ENGINEERING

• LABORATORY (SEL)

APPLYING SOFTWARE MEASUREMENT

by Frank McGarry, Sharon Waligora, and Tim McDermott

INTRODUCTION

The Software Engineering Laboratory (SEL) was established in 1977 as a coopera-

tive effort among the National Aeronautics and Space Administration's (NASA's)

Goddard Space Flight Center (GSFC), Computer Sciences Corporation (CSC), and

the University of Maryland to understand and improve the software development

process and its products within GSFC's Flight Dynamics Division. During the past
14 years, the SEL has collected and archived data on over 100 software develop-

ment projects in the organization. This has allowed the SEL to gain an understand-

ing and to model the development process. From these data, the SEL has derived

models and metrics that describe the typical flight dynamics software development
process. These models and metrics are the basis for software estimation, plan-

ning, and general management in this environment. They also provide typical

project profiles against which ongoing projects can be compared and evaluated.

The SEL provides managers in this environment with tools (on-line and paper) for

monitoring and assessing project status.

This paper presents experiences in the SEL of applying software measurement.

Examples from flight dynamics project data are presented that demonstrate how
the SEL has used software measures to (1) understand the local software environ-

ment, (2) manage active production projects, (3) plan future projects, and (4) de-

velop rationale for adopting software standards and technology.

SEL Product Environment (Viewgraph 2)

The SEL production environment consists-of projects that are classified as mid-

sized software systems. The average project lasts 26 months and requires 9.5 staff

years of effort. The average project develops 93,000 source lines of code (SLOC)
and delivers 102,000 SLOC.

Virtually all projects in this environment are scientific ground-based systems al-

though some embedded systems have been developed in this environment. The
bulk of the software is developed in FORTRAN although Ada is starting to be used

more heavily, while other languages, such as Pascal and assembly, are used occa-

sionally.

F. McGarry
NASA/GSFC
I of 33

5803

The average staff level for a typical SEL project is 5.4 full-time people. SEL
managers average 10 years of overall experiences, with 5.8 years in the applica-
tion area, and the technical staff averages 8.5 years overall experience, with

4.0 years in the application.

Software Technology Studies in the SEL (Viewgraph 3)

The SEL has undertaken many technology investigations since 1977. Data have

been collected on more than 75 production software development projects, and all
of these data have been fed back into the SEL's experience base.

The SEL regularly collects detailed data from all its development projects. The

types of data collected include cost (measured in effort), process data, and product

data. The process data include information about the project, such as the method-

ology, tools, and techniques used, and information about personnel experience and
training. Product data include size (in SLOC), change and error information, and

the results of postdevelopment static analysis of the delivered code. For a more

detailed description of the data collected, see Data Collection Procedures for the
Rehosted SEL Database, SEL-87-008.

The SEL has analyzed over 50 technologies, such as design approaches, testing

techniques, tools, environments, training, languages, and methodologies. Also, the
SEL has published more than 150 papers and reports detailing the results of these

investigations.

In the feedback process, the SEL has evolved' the standards and practices used for

Flight Dynamics software development. These include models of effort, changes
and errors, and costing. The SEL has also established quality assurance proce-

dures and testing strategies. Standards and practices are an important avenue of
feedback of the measurement performed by the SEE

SEL APPLICATION OF MEASUREMENT

There are four major applications of measurements within the SEL:

Understanding the Software Environment is essential to any software engi-

neering undertaking. Before anything can be changed, it must be understood

the way it exists now.

Management of Current, Active Projects depends on measuring the projects
and on having a baseline of experience against which to compare projects
trends and absolute measures.

Planning Future Projects requires cost mode!s, standard effort distributions,

assessments of available technologies, and scheduling models, all of which

depend on measurement and a clear understanding of the environment.

F. McGarry
NASA/GSFC
2 of 33

58O3

Rationale for Adopting Software Standards and Technology is the least obvi-

ous, but arguably the most important, application of measurement. Measure-

ment allows the SEL to quantitatively evaluate new technologies that have

potential for favorably affecting the SEL environment. Through this method,

appropriate technology can be inserted quickly and large-scale misapplication

of inappropriate techniques (for the SEL) can be avoided.

The remainder of this section discusses each of these areas in more detail.

UNDERSTANDING THE LOCAL SOFI'WARE DEVELOPMENT

ENVIRONMENT

Understanding what an organization does and how the organization operates is

fundamental to any attempt to plan, manage, or improve the organization. This is

true in general and especially true for software development organizations. The

following examples illustrate how the SEL has come to understand its environ-

ment. The measures examined are certainly not exhaustive but show how under-

standing comes from measurement.

Where Do Developers Spend Their Time (Viewgraph 6)

There are two majors points to this chart. The first point is that the baseline

characteristics of the development process must be understood if projects are to be

planned and managed or if new technology is to be evaluated. The second point is

that a stable environment is not quickly or easily upgraded by changes to the proc-

ess.

One baseline characteristic of the SEL software development process is effort dis-

tribution, that is, which phases of the life cycle consume what portion of develop-

ment effort. Viewgraph 6 compares the distributions of effort for FORTRAN and

Ada projects in the SEL, both by life-cycle phase and by activity. The phase data

counts hours charged to a project during each phase. The activity data counts all

hours attributed to a particular activity, regardless of when in the life cycle the

activity occurred. Understanding these distributions is important to assessing the

progress of an ongoing project, planning new efforts, and even evaluating new

technology. The Ada distributions are a case in point.

These graphs of effort by activity show that, contrary to the early expectations for

Ada, there has been no radical change in programmers' effort distribution. Ada

projects spend about 20 percent of their effort on design, versus a slightly higher

figure (23 percent) for FORTRAN. The comparison for coding is 18 percent ver-

sus 21 percent, for testing it is 34 percent versus 30 percent. "Other," the final

category, is 27 percent of Ada effort versus 26 percent of FORTRAN. "Other"

includes all of the ancillary activities that do not fit into one of the primary catego-

ries, such as managing, training, attending meetings, and documenting.

The graphs of effort by phase shows some change in the Ada distribution. The

design phase takes 27 percent of the Ada effort, versus 26 percent for FORTRAN.

F. McGarry
NASA/GSFC
3 of 33

5803

J

w

Ada code phase consumes 46 percent of total effort, compared to only 37 percent

for FORTRAN. The test phase takes 27 percent in Ada and 37 percent in

FORTRAN. SFJ. experience indicates that, in this environment at least, there is a

legacy of many years of developing FORTRAN systems that is not quickly

changed, not even by such a significant change to the process as using a different

language like Ada.

Comparative Classes of Errors (Viewgraph 7)

Comparison of the types of errors that are being made in FORTRAN and Ada

projects gives similar results. Again, contrary to expectations, there seems to be

little difference in the error profiles observed in systems using the two languages.

Computational and initialization errors are each 15 percent of the errors for both

languages. Data err6rs differ by only l percent, 31 percent for Ada as opposed to

30 percent for FORTRAN. Logic or control errors are higher in Ada, 22 percent

versus 16 percent, while interface errors are lower, 17 percent for Ada versus

24 percent for FORTRAN.

The SEL is learning through measurement that the long heritage of FORTRAN

development is not easily changed. The way the organization does business and

the experiences of the individuals in the organization is a stronger influence on the

performance of a project than any one specific technology.

Software Growth Profile in the SEL (Viewgraph 8)

The software growth profile in the SEL is a good example of the models that are

developed to understand the local environment. Lines of code are not counted in

this growth model until they are placed in controlled libraries.

Typically, only a small amount of code is developed during the design phase and

the first part of implementation. SLOC growth during implementation shows peri-

ods of sharp growth separated by more moderate growth. This is a reflection of

the SEL practice of implementing systems in builds. Also, in this environment,

developers tend to retain code until they can deliver integrated chunks of the sys-

tem to the controlled libraries, a practice which contributes to the surges in code

growth.

This model also shows that, typically, 10 percent of the code is produced after the

start of testing. Measuring code growth led the SEL to investigate why the system

continues to grow after the end of implementation. The growth reflects error cor-

rections and enhancements made to make the system more suitable to the needs of

the users. Measurement focused attention on this growth and led to a deeper

understanding of the way the SEL does business.

Error Detection Rate in the SEL (Viewgraph 9)

The error detection rate is another interesting model from the SEL environment.

There are two types of information in this model. The first is the absolute error

F. M¢Garry
NASA/GSFC
4 of 33

,5a03

L

U

Ii

J
I

N

|

|

m

==

m

|

E

I

m

!!
2

rates expected in each phase. The rates shown here are based on projects from the

mid-1980s. The SEL expects about four errors per thousand SLOC during imple-

mentation, two during system test, one during acceptance test, and one-half during

operation and maintenance. Analysis of more recent projects indicates that error

rates are declining as the software development process and technology improve.

The second piece of information is that the error detection rates reduce by 50 per-

cent in each subsequent phase. This datum seems to be independent of the actual

values of the error rates. It is still true in the recent projects where the overall

error rates are declining. The next section will show how this understanding can

be applied.

MANAGEMENT OF ACTIVE DEVELOPMENT PROJECTS

Once an environment is understood, historical data can be used to develop models

that describe the expected behavior of the "typical" project. Managers in the SEL

compare current trends of active project data with expected trends (models) and

those of similar past projects to assess the current state of their project. Effort,

computer utilization, error and change rates, and size estimates are among those

data that SEL managers find most useful in assessing stability, quality, and reli-

ability. The following paragraphs illustrate management through measurement in
the SEL.

Using Software Error Rates (Viewgraph 11)

This example shows the use of the error rate model on the Cosmic Background

Explorer (COBE) attitude ground support system (AGSS). Comparing the meas-

ured error rate with the SEL model described in Viewgraph 9 gives an early indica-

tion of the quality of the product. In this case, both COBE's absolute error rates

and the decline in the detection rate are better than the model, an occurrence

which gives a strong indication that this system will be more reliable than average.

In fact, the software for this project has proven to be extremely reliable.

If the error rate had been low, but the detection rate had not declined, SEL experi-

ence would have pointed to inadequate testing and a less reliable system.

Tracking System Failure Reports (Viewgraph 12)

This graph shows how failure reports behaved during acceptance testing of one

project. Early in acceptance testing most of the staff effort is spent performing

and evaluating tests. If the system is as reliable as planned, the failure rate will

decline as testing proceeds, allowing the staff to spend more effort fixing defects.

In this case, twice the expected numbers of errors were found during acceptance

testing. Fifteen weeks into testing nearly all of the expected errors had been de-

tected and hardly any had been fixed; clearly not enough staff were allocated to

fixing problems. In the 17th week, additional staff was allocated to correct errors.

F. McGarry
NASA/GSFC
5 of 33

5803

Almost immediately, the open failure reports ("X" curve) flattened out and began
to decline as the fix rate accelerated and the error detection rate slowed down.

The point at which the "open" and "fixed" curves cross is especially important

because it marks the point at which defects are being repaired faster than they are

being discovered. At this point a manager can more confidently predict the end of

acceptance testing.

Tracking Computer Use (Viewgraph 13)

This example compares a typical SEL project's use of central processing unit
(CPU) resources on the left side of the chart to a project with a deviant CPU use

profile on the right. Being different does not mean that the project is necessarily in

trouble. For example, the project might be using the cleanroom methodology; the

project might be doing extensive desk work. Here, the CPU usage curve told the
project's managers that something was different and raised a flag that this project
should be examined. In this ease, investigation showed that the project was being

adversely affected by a high number of to be determined (TBD) requirements,

requirements changes, and redesign. Management replanned the project, taking
these factors into account.

CPU usage data are an example of valuable data that are easy to collect. Most

operating systems have accounting systems that provide it. However, for CPU

usage data or any other measurement to be useful to the management of develop-

ment projects, a baseline model must explain the behavior of the measure in the
local environment.

Characteristic Staffing Profiles (Viewgraph 14)

This is the time distribution of effort on two projects of similar complexity. The

profile on the left is typical for the SEL, with peaks near the beginning and end of

the implementation phase.

The project on the right suffered from the Mythical Man Month syndrome. Re-

sponding to significant project requirements changes in the middle of implementa-

tion, the staff was nearly tripled to try to meet schedule requirements. Staff levels
did not start to decline until the start of acceptance testing. Both productivity and

reliability suffered on this project.

A staffing profile with a sharp increase late in the development life cycle is a clear

indicator that something on the project is out of control and that quality and reli-

ability will likely be lower than expected.

Tracking Estimates of Size at Completion (Viewgraph 15)

Tracking final size estimates provides another strong management indicator.

Project 1, on the left, had a typical SEL history of manager's estimates of the final

F. MeGarry
NASAIGSFC
6 ot 33

5803

size of the system. In the SEL environment, requirements changes and specifica-

tion modifications usually cause a system to grow up to 40 percent larger than the

estimates made at preliminary design review (PDR).

Project 2, on the right, shows several deviations from the normal trend. It experi-

enced extreme inflation of the size estimates in the middle of the code phase. The

spot labeled 2 on the graph represents an increase of nearly 25 percent in the

manager's estimate of the final size. This should have caused a management

review of the project. No action was taken, and the underlying causes of the

inflation, primarily specification changes, continued to increase the size of the

project. Finally, at the spot labeled 3 on the graph, following another 50 percent

increase of the size estimate, the project underwent a detailed management review,

and the changes were brought under control.

Management should have questioned the decrease in size estimates at the critical

design review (CDR) (label 1 on the graph) after the size had grown significantly

during preliminary design. This was an early indicator that the specifications were

not as stable as is expected in this environment.

Using Effort Data in Replanning (Viewgraph 16)

Effort data can be a significant aid in replanning, as illustrated by the history of

successive staffing plans for one project.

The SEL has discovered two typical effort distributions for this environment. One

of them is roughly parabolic and the other has two peaks! the first near CDR and

the other near the start of testing.

The first schedule was based on an underestimate of the size of the system and

used a rough parabola for effort distribution. Toward the end of design, it became

clear that the system was larger than anticipated, and the effort was replanned at

CDR. The first replan used the SEL two-peak model of effort distribution. Effort

continued to grow when the second plan called for it to level off and decline. An

audit was held in the middle of the code phase when it was clear that still more

staff were required to maintain progress. The audit determined that the project

was plagued with an unusually large number of unresolved TBDs and requirements

changes and that--as part of the corrective action--another replan was necessary.

The second replan was based on an accurate size estimate and returned to the

parabolic distribution, which the project followed to a successful completion.

This is a straightforward example of the use of metrics data in both planning and

monitoring a project. The relationships that have been documented for this envi-

ronment support planning and the collection of data on the performance of current

projects allows corrective action to be taken before projects are hopelessly off

target.

5803

F. McGarry
NASA/GSFC

7 of 33

FOUNDATION FOR PLANNING FUTURE PROJECTS

A vital application of measurement is planning future projects. The models and

relationships that emerge from measuring the local environment are the basis of

sound estimates and plans.

Planning Aids for One Environment (Viewgraph 18)

The cost estimation equation, the effort distribution model, the computer utiliza-

tion estimation equation, and the documentation estimation equation are examples

of the relationships that are used as planning aids in the SEL environment. They

allow managers to generate realistic project plans, with proper allocation of effort

and scheduling of milestones. Supporting resources can be planned and scheduled
with confidence.

Equations that produce an estimate of the cost of a project from an estimate of the

size of the system are widespread today. The SEL version of this equation

is Effort = 1.48 * KSLOC 98. An estimate of total effort is not enough, however.

Effective planning requires an understanding of how effort will be spent and when

reviews and milestones should occur. The effort distribution model provides SEL

managers with schedule guidance. Other relations are also important to good

planning, such as how much computer resources will be required and how much

documentation will be published. SEL project data are evaluated periodically to

produce up-to-date planning data for new projects.

Additional Local Planning Aids (Viewgraph 19)

Software managers in the SEL have observed relations--such as the fraction of

changes that are due to errors, the growth of size estimates over the life of

projects, and the cost of maintenance--that are useful for planning. Approxi-

mately one-third of the changes made in this environment are made to correct

errors. This heuristic is useful for gauging the quality of the system as it is devel-

oped and assessing the effectiveness of testing. The final system is about 40 per-

cent larger than the size estimate at PDR. This observation quantifies the stability

of the requirements of the systems built in the flight dynamics area. Maintenance

costs per year are about 12 percent of the original development cost. These rules

grow out of understanding the environment.

This chart also presents metric relations between FORTRAN and Ada. Ada pro-

grams that conform to the SEL Ada style guide have three times the SLOC of their

FORTRAN equivalents. When comments are discounted, Ada programs are

2.5 times the size of their FORTRAN equivalents. When only those source lines

that are part of an executable statement are counted, Ada programs are still twice

as large as FORTRAN. Finally, when considering only the number of statements,

the programs in the two languages are the same size.

F. MeGarry
NASA/GSFC
8 of 33

58O3

IR

|

i

w,

IE

|

IF

L

These differences between Ada and FORTRAN reflect the coding styles used for

Ada and FORTRAN in the SEL. One of the important lessons to be learned from

this viewgraph is that even in a baselined environment, it is crucial to understand

which model to use for planning.

RATIONALE FOR ADOPTING PRACHCES AND GUIDELINES

Measurement provides an organization with justification for the way it does busi-

ness and an orderly process for selecting which new technologies and methods to

adopt. This section presents the SEL experience with evaluating and trying to

understand two sample technologies that are candidates for becoming "standard"

in the SEL. These two technologies, the Ada language and Object-Oriented Devel-

opment (OOD), are currently under intense study in the SEL.

Impacts of Ada on a Production Environment (Viewgraph 21)

This chart shows the current results of the SEL's investigation of Ada. The adop-

tion of Ada is much more than just changing languages. Proper use of Ada implies

the use of new software engineering techniques that must be learned and practiced.

This deeper change adversely affected the productivity results from early Ada

projects. While initial productivity results for Ada were below baseline FORTRAN

productivity, the trends are in the right direction in subsequent uses of the technol-

ogy.

The use of Ada has demonstrated sufficient positive residual effects to offset initial

productivity concerns. The use of Ada seems to have favorably affected some

measures in this environment; for example, Ada technology has improved the level

of reuse for the sample set of projects studied so far.

The history of the insertion of Ada technology into the SEL environment shows

that in some cases the environment must evolve to be able to effectively utilize this

new technology. The FORTRAN legacy in the SEL, such as life-cycle models,

estimating relations, and review techniques, is pervasive and changes slowly.

Object-Oriented Development (OOD) and Code Reuse

(Viewgraph 22)

This viewgraph contrasts the levels of reuse achieved by five recent projects using

structured analysis (SA) and five projects using OOD. The SA projects seem to

stay relatively constant in the level of about 35 percent reuse, even when reuse is

pursued very aggressively (Upper Atmosphere Research Satellite (UARS) Dynam-

ics Simulator (UARSDS) project). The OOD projects, however, start with better

than 30 percent reuse. With experience, and the accumulation of a body of Ada

code for reuse, the last two OOD projects are projecting 76 percent and 90 percent

reuse. The significant level of reuse in the Extreme Ultraviolet Explorer (EUVE)

Telemetry Simulator (EUVETELS) (90 percent) was accomplished through reusing

F. McGarry
NASA/GSFC

9 of 33
5803

specifications and design as well as code. OOD seems well suited for reuse, but

further study is required to conclude that OOD technology is primarily responsible

for these high levels of reuse.

OOD, in the SEL, is a new technology success story. The SEL has tried and

abandoned many other technologies, but currently intends to keep working with

OOD. The keys to being able to evaluate new approaches to software development

are (1) being able to measure trial projects and (2) having a baseline of the envi-

ronment against which to judge the new method.

CLOSING THE LOOP--APPLYING MEASURED TECHNOLOGIES

IN THE SEL

Viewgraph 23 shows examples of how the SEL closes the feedback loop by incor-

porating the results of studies in the SEL guidelines for software development.
This feedback is the primary mechanism of improving the software development

process in the SEL. Without feedback, it is not possible to ensure that manage-

ment capitalizes on the lessons learned on prior projects.

The seven documents listed on the right side of the viewgraph define the set of

standards and guidelines currently used as a result of the SEL studies. They con-

tain the SEL life-cycle model, the process model, and the product models. These

documents obviously change as the SEL gains more experience.

SUMMARY

This paper has presented some examples of the way that the SEL measures soft-

ware development and uses the measurements. Measurement produces under-

standing of the environment. This understanding can then be used in planning and

managing projects. Finally, understanding is necessary as a basis for evaluating
new tools and techniques so that a continually improving process may be adopted

for the software development organization.

5803

F. McGarry
NASA/GSFC
10 of 33

VIEWGRAPH MATERIALS

FOR THE

F. MCGARRY PRESENTATION

5794

J

g

g

!l

i

m

|

I

JL

E

m

II

U

i

LLIZ
O0

oO
-- n" o00

B@

O_ o
-- 0

0
Z
<

>-

O

v
Z

IL

0
II
(0
(9
<
gO
<
Z

0")
O0

a_
0_1

rr'
i!1

LL!
>
0
Z

!

11.
0
-r
(0
v
n-
O

z
I

rr
iii
iii
Z

Z
iii

iii
rr
<

0
O0

<

Z
Z
<

-r"
F-

-r
n_
,,(

m

F. McGarry
NASA/GSFC

1! of 33

F. McGarry
NASA/GSFC
12 of 33

O3
Z

< 0
F-- ,_ F--

_Zz

_o __ _ o
LI.I r_'

•_ 8 N 8 8 8

q__"

O,z .
Om_ k-

g g 8
o _ o_z _

o _ _o _,,,_ o
oo o _ _oo_

0 C3 u_ rr" o u_
rr w _u,,, O o _ _ _Z u_wO
Q=

+ F-- LUCO U.! 0

t-- _ Orb 0 LU
¢0

• • • • • g

F. McGarry
NASA/GSFC
13 of 33

l--
Z
UJ

LIJ

t./)

LU

0
I

I--

(3
I

12.
n_

>-

0
._I
0
Z

l--
Z
LU

Z
0
CC

z 0
LU rr"

Q.LU
rr Z
•a: o

0 0
_ w

m o o
u.I rr" rr"

i1. a.
I-- u.I u.i
_ > rr
z F- ::3

LI_

Z
CO Z

UJ ,_ Z
a Z
z < 2i

CD

0
iii

0
i!1
!-

a

Z
<
I--

m

n
0
a

0
Ii

i!1
._1

Z
0
m

n'-

F. McGa_y

NASAIGSFC

14 of 33

.=
we
(;3

tlJ
m

J

III

i

=

i

i

R

-z

qm

=

=

LIJ

UJ

O n-
O

W LIJ
_J

iii
(/)

UJ

f.-
LI.
(3
(/)

f%

F. McGarry
NASA/GSFC

15 of 33

li I
I,_1

.............._-,,, _
,,o,, _>

E :

io_1 o

o

o.

F. McGarry
NASA/GSFC

17 of 33

0
o
1""

0 0 -0 0 0 0 0 0

007 7V101 -40 %

0
o,I

0

0

F. McGarry
NASA/GSFC

18 of 33

o
r_
s.-
cM

n-_-

i
o

o
ao

n-

X

_O

X

I
tO

X

×i

×I
xl

...J_

X
X

X

X

X

I I I
CO _ _-- 0

X

O0-1S>I/SEIOEIEI=I

0

,,'5,

Z

o

,,=,

I,-

I.U

ILl
13
0
0

m

o
u.i

0
ec-
a.

Z
0

ILl

n_

o'J

F. McGarry

NASAIGSFC

19 of 33

ill

Ill
or"

.:1: ta
tu ¢_

tt 00
0 _-

0
I--. UJ

"' 0

a.

o

0
m

gO
0
m

a.
a.

_l
ill

0
a.
a.

iii

iii
r_

iii

m

0

_t

O

C_
-o

F. McGarry

NASA/GSFC

20 of 33

U.!

m?

O

or)

O

W

w

W

w
13
O
O

O O

rr"
O O

m

m

co

O0-1S_t/SEIOEIEI3

o

It)

o
I',,.,

C-,,

F. McGarry
NASA/GSFC
21 of 33

(/)
I--

I_, "J
111

LIJ_)
E:

m

LUg-
i= o!11

0
m I:=

LI. '-

LUmU.
V

>.
(/) I

d o o

(SONVSnOH1 NI)
811dOd::ll:l 31dflTIV:l '-JO1=i=I81/_NN

o
o

e'J

8

O

I11
O

1,11
I--
I,I.

O

ILl

O

O

O
o,

tl

P-.,
m

co

0..
0

F"

I.U
a_

_i
v

r_
ILl

P

uJ._

_r

LA.

131 "--_
_r

E3
Z 0 Z
3 III W
0 X a-
u. E 0

i i i

O<lx

n_

1.

o

F. McOarry

NASA/GSFC

22 of 33

°

a_

° !
11__ _-I=1V18 -10 (8_I:::I:IM _II::IOM I=:lnOH-Olz) J.N_rlVAINO=:I-31AIII-TIN-I

U.I

_o

o

_o

i

i !I
g

gg

0

F. McGarry
NASA/GSFC
23 of 33

U.

0
m

Z_

Z
0
CO

tn

0

0

0 0 0 0 0 0 0

(OtzOg SVN) SEll'ION I]dO

0')

0

t",,,,

E,

F. McGatry
NASA/GSFC
24 of 33

£/N37VAIf703 ::IIAIIZ "1-1f1-1

LU
tr-
ILl
U_
UJ
rt-

,k

0
Oa

0

I"-.

g

>

F. McGarry
NASA/GSFC
25 of 33

o_: o

,,, ooo o_ _ ..

_.

"i
IJ,l_ z

0 0
0
n I--
Z Z
W U.I

I'.- 1.1.1
, n-"

z N

_o _o
.-_ o o 8 oJ

3000 :!0 S=INFI o a. < 7-+oo +
z ,,, o_ +oooz w _'0

w_ _'"'_'" _ _ LLI_

+,,, .s+,,,1, ++-.0_ _ w,, _ .
0 1-,-_ _, o,0:, - p_._....<<0 Z I-

o
N" °_ ° _ '''°
0,,_ "''''''''''''''''" "" w o ,_.r-"rr I--Z

w _ wO
_ z o m cO O0

®®®
0

0 0
0 0
o 0o 3000 30 $3N17 o o
0 0

O.J

w

F. McGarry
NASA/GSFC
26 ol 33

Z
LU

C/J

W

m

m

O.
O.

O:
0

m

0

W

a
0

O.

W

0

O.

v--

c_

F. McGarry
NASA/GSFC

27 of 33

-r
n_

n-

UJ
m

',-- ',-" 04 0,1 ',-" 0 •

T- _" i

z

oLAJ

0 i

0 z_ _= ,

°,, m, m "
Z Z
,,, <

Z IA_ N- "

_ o _zor) --. w

0 Z < o_- :
.=,. 0 Z 0 I-- _-_

_ o _ z _
o - _ ,,, _w _" _ -
0 co " _ -

i _- I- :_ 0 o< _ "_
r'_ 03 rr _7 zi r_ 0

UJ _7 1.11 IA. __"

O= O_ 03 w0 _ w o
_- ,, (D ,,,z

_, _ ,, 0 < ,,,=W 111 0 O- ,_.
OC o
-k

f_

F. McGarry
NASAIGSFC
28 of 33

J

F. McGarr_
NASA/GSFC

29 of 33

!--
Z
!11

i,i

(/)
UJ
Z
/

..I
LU
a
m

(/)
LU
0

UJ
...!

"' 0 ._

0 "' "'
-- 13 :_
I-" -" a.

0 0 0
._ E LU
D. a. :_
el_ uJ

-J L_
ii!

(/) _..
D.
0
a

O,I
q
I%

"3

F. McGarry

NASA/GSFC

30 of 33

MJ
m

!.1.1

I--
0

0 O3
LLI
Z
a

.J

o
or;
I--
0

m

tD

CO
(Xl

I I iI ! i

If) 0 It") 0 It') 0 1.0 0
0 O_ r,,. (o ,,Q- cO

e0_

f,

rr
I--
rr
0
IJ_

AVG/S::INll

u .
B

m
• M

I11.._.

r.- o
o_

.-mo

Z
:D 1.11
13rr

o,.-

,,=,

8
.,,-0

o_
_0

I.L I_

°,
zS

_o
C)

S_

° ,,o,,

_,,..

o

F. McGarry
NASAIGSFC
31 of33

@
rc

#

8
0

<_

z,,9

_>
<w

-3

F. McGarry
NASA/GSFC

32 of 33

Z_

'_LLI
031--

W
N

W
m

ILl

8 o

O

LLI 13.

zZ z

oo,,_ 09
LLII.LI III
I.-- nr 1:3

>

>

O3 (5
-J Lu Z

0 Lu (5 --
CI < 13..

0 0 _0
nr _

0 0
0 0 n-

O 0 _- _-

o

F. McGarry
NASA/GSFC
33 of 33

Evaluation of the Cleanroom Methodology in the

Software Engineering Laboratory

Ara Kouchakdjian

Scott Green

Victor Basili

(University of Maryland)

(NASA/GSFC)

(University of Maryland)

[Slide 1]

Over the past two years, the Software Engineering Laboratory (SEL) has conducted

an experiment using the Cleanroom software development methodology. The

methodology is being used on an actual Flight Dynamics Division (FDD) project in

order to evaluate the feasibility of Cleanroom in the environment. This presenta-

tion will first focus on a description of the methodology. After that, the experi-

ment itself will be explained. Finally, some results will be shared and future work

will be described.

[Slide 2]

The Cleanroom methodology was conceived by Dr. Harlan Mills, formerly at IBM-

Systems Integration Division (IBM-SID), in the early 1980's. The goal of Clean-

room is to develop software that is 'right the first time.' Mills' contention is that

the best-tool for software development is the human mind. Unfortunately, it is

also the most underutilized tool. The 'right the first time' goal is achieved by three

activities. First, there is an emphasis on human discipline in program verification

rather than computer aided program debugging. The concept behind this belief is

that a high quality software product is built by solid design and development prac-

tices, not by debugging a mediocre product. This concept is facilitated by using a

top down development approach, with a large number of builds. In this manner, a

system is broken down into many small pieces, each of which can be solved and

verified correctly, resulting in a high quality system. The second manner by which

the 'right the first time' goal is ensured involves the complete separation of the

development and test teams. Developers are not allowed to compile their own

code, let alone unit test it. This forces developers to use good design and develop-

ment techniques in order to produce a high quality product, since they do not have

the luxury of testing the code. Third, software is developed with certifiable reli-

ability, which is assessed in terms of Mean Time to Failure (MTTF). This

5794 A. Kouchakdjlan
Univ. of MD
1 of 22

approach, along with the top down development, allows the quality of the system to

be continually assessed during the testing process. With Cleanroom, the emphasis

is on error prevention, not error removal.

[Slide 3]

Development with the Cleanroom process is done at a desk or on a personal com-

puter. Once again, developers cannot test the code, nor can they compile it. The

developers read and review the code until they are convinced that the code is

correct. At that point, they submit the code to the testers, who put it under con-

figuration control, then compile, link and execute the code on the mainframe.

Testers use a statistical testing approach, where test cases are generated according

to the operational profile of the final system. When failures occur, the code is

returned to the developers and corrected.

[Slide 4]

Cleanroom has been used previously at IBM and at the University of Maryland,

with significant success in both environments. Surprisingly, there has been little

additional use of Cleanroom in other environments. The Cleanroom experiment in

the SEL is significantly different than the previous uses of_Cleanroom. First, the

organization is independent fromthose who conceived of the Cleanroom method.

Second, the system being developed is much larger than the one developed in the

controlled experiment at the University of Maryland, and is a production system.

Finally, the FDD environment is one in which there is a large amount of change.

The system specifications frequently change throughout the development lifecycle.

This was a major area of concern as it is difficult to develop software 'right the

first time' when the concept of 'right' may often be changing.

[Slide 5]

The primary reason for the SEL Cleanroom experiment was to possibly improve

the way software is developed in the FDD. This includes improvements to both the

process and the product. For example, the SEE was concerned about the large

amount of time spent doing rework in the FDD environment. It is estimated that in

this environment between 35% and 45% of the lifecycle effort is expended in re-

work activities. Comparable figures have also been reported at TRW. These

i

i
|

F

|

v

p

i

5794 A. Kouchakdjian
Univ. of MD
2 of 22

activities include correcting errors, making changes, redesigning components, and

implementing modifications to the specifications. There was hope that Cleanroom

could help decrease the amount of rework done on projects.

In addition, the SEL wanted to apply, assess, refine and reapply the Cleanroom

methodology as described by the Improvement Paradigm. With the description of

the method now complete, the experiment can now be discussed.

[Slide 6]

The experiment is being conducted on an actual production system of approxi-

mately 33,000 lines of FORTRAN code. The staff was separated into development

and test teams and spent approximately half their schedule on the project, as all

personnel work on multiple projects. This was the first time that any of the staff

had worked on the specific application, and, of course, this was the first applica-

tion of Cleanroom by the personnel.

[Slide 7]

The project was completed over 22 months, from January of 1988 to November of

1989. At the present time, the subsystem is at the end of system test. A month of

training served as preparation for the project. Training activities included related

readings, a number of project meetings, and a one week tutorial on the Cleanroom

methodology presented by Victor Basili of the University of Maryland and

Michael Dyer and F. Terry Baker of IBM-SID. The focus of the tutorial was on

previous experience with Cleanroom and a detailed description of the method.

When looking at the schedule, one notices an overlap between the coding and

testing phases. This is possible because they are being done by two different

teams, which allows the activities to be done in parallel. In addition, the top down

development approach allows the developers to work on the second build of the

system while the testers are testing the first. Each of the six builds contained

approximately 5000 source lines of code, which is much smaller than typical build

sizes in this environment.

[Slide 8]

The Cleanroom method was tailored to better fit the FDD environment. Typically,

the FDD follows a waterfall approach to software development, with the

5794 A. Kouchakdjian
Univ. of MD
3 of 22

development lifecycle divided into sequential phases. During the Cleanroom proj-

ect, design, implementation and testing activities occurred simultaneously, al-

though a top down development approach was still followed. In the FDD, the

developers and testers are often the same, whereas the development and test teams

were completely separated on the Cleanroom project. During the design phase, the

Cleanroom developers improved and corrected the design as a team, rather than

having one developer read another's program design language (PDL). A more

thorough code reading process was also employed, where two developers would

read the code written by "the third. The code would be reread until the developers

were convinced that the code had no remaining faults. This process replaced the

typical code reading and unit testing done in this environment. Finally, the statisti-

cal testing approach was significantly different than the system and integration

testing which is employed in the FDD.

Since the description of the experiment itself is now complete, there is now a

context in which to view the results.

[Slide 9]

In terms of the distribution of effort in various activities during the life cycle, we

see a notable difference between typical SEL projects and the Cleanroom project.

Significantly more time was spent in design on the Cleanroom project than on

typical SEL projects. Additionally, the effort distribution during the coding phase

was also different. The coding phase consisted of two activities, writing code and

reading code. Typically, 15% of the coding effort is expended reading code. On

the Cleanroom experiment, over 50% of the coding effort was spent reading code.

A different distribution was expected as the developers did not unit test their code,

and relied heavily on the code reading process as the only means of verification.

Overall, we see that the total effort distribution is significantly different.

[Slide 10]

When looking at the growth of the system with regard to both size and number of

changes, there are notable trends. Code and changes began to appear later with

the Cleanroom project, as more time was spent in design. The growth rate was

also greater for the Cleanroom project, which was to be expected. The Cleanroom

growth profiles are quite different than those associated with typical SEL projects.

5794

4

A. Kouchakdjian
Univ. of MD
4 of 22

!

w

!1

[Slide 11]

For a comparison of computer usage, the Cleanroom experiment was viewed in

relation to three recently completed projects in the FDD. Since the three systems

were between three and seven times the size of the Cleanroom project, the figures

for all systems were normalized by the respective sizes of the systems in order to

form a common basis of comparison. The two areas of comparison were the

number of computer runs (compiles, links and executions) and the number of CPU

hours used. Overall, the Cleanroom project used between 70% and 90% fewer

computer resources than these three typical SEL projects. Again, this was ex-

pected as developers were not allowed to compile or unit test their code.

[Slide 12]

Next, the error and changes rate were compared, along with project productivity.

Error and change rates are tracked from when code comes under configuration

control through the end of system test. With typical FDD projects, the code goes

into the system library after it is unit tested. This is a later time than the Clean-

room project, which delivers code to the controlled library after it is code read.

The error rate was found to be less than half the error rate on a typical SEL

project. Of course, the acceptance test results will be the final gauge in under-

standing if Cleanroom actually leads to a lower error rate. The change rate was

one third less on the Cleanroom project than on typical SEL projects. Finally,

productivity is nearly 70% higher on this project when compared to other projects

in this environment. The reasons for these impressive preliminary results must be

further understood.

[Slide 13]

One of the original goals of the project was to decrease the rework effort. As

previously stated, the error and change rates have decreased with the Cleanroom

project. Additionally, the time to fix an error has also decreased. Typically, less

than 60% of the errors are corrected in less than one hour. With the Cleanroom

experiment, approximately 95% of all errors were corrected in less than one hour

As these results seem to indicate a decrease in rework effort, one of the original

goals of the Cleanroom experiment appears to have been satisfied.

5794

5

A. Kouehakdjian
Univ. of MD
5 of 22

[Slide 14]

Finally, the distribution of faults according to where they were found and corrected

was viewed. This accounts for every fault found during designing, coding and

testing. Over half of the total number of faults were found during the code reading

phase.

Of those faults, less than 29% were found by both code readers. Since this means

the vast majority of faults were found by only one reader, we are led to believe that

two code readers were more effective than one on this project. During compila-

tion, only 6% of the routines contained nonclerical faults. Most of the compilation

faults were simple typographical errors. Overall, more than 87% of all faults were

found before the code came under configuration control, and over 91% of all faults

were found before the first test case was executed.

The fact that the SEL was able to use a version of the Cleanroom methodology in

its environment, together with the early analysis, would lead one to conclude that

the experiment was successful. Preliminary results, such as decreasing error and

change rates, increased productivity, and a reduction in resource usage and rework

efforts, are very impressive. Of course, much additional analysis remains.

[Slide 15]

The results must be better understood. Some results may be affected by extenuat-

ing circumstances, such as the quality of the staff working on the project. Final

conclusions cannot be made until the subsystem is fully integrated and goes

through its formal acceptance testing process. The first experience must also be

tailored and packaged, as described in the Improvement Paradigm, so that addi-

tional experiments may be planned. Future experiments, coupled with what was

learned in the first experiment, will allow the SEL to better understand and assess

the Cleanroom methodology and its applicability in the FDD environment.

5794 A. KouchakdJian
Univ. of MD

6 of 22

VIEWGRAPH MATERIALS

FOR THE

A. KOUCHAKDJIAN PRESENTATION

5794

0
0-'

u-O
0

0

Ill

Z

0)
(:0
O)

C_I

rr
u.I
rn
=E
uJ
>
0
Z

0
0

U')

In

¢.)

A. Kouchakdjian
Univ. of MD
7 of 22

I"--

W
a
m

.J
¢,o

o
o

o

A. Kouchakdjian
Univ. of MD

8 of 22

O

o.

O

¢q

tlJ
e_
m

..J
¢n

O

A. Kouchakdjlan
Univ. of MD
9 of 22

O

o
in

in

W

m

-J
O_

Q

zz _, •

0

_ IJ.l .,.i •

o _ " 8

- _ _ _: _,o _

o 0<=8o 88 _ _-

o • • • _ 0 .

|

A. KouchakdjJan
Univ. of MD

I0 of 22 i

LLI
a.
P<
tlJ

UJ

b-

I'*..
O

O

A. Kouchakdjian
Univ. of MD
12 of 22

_O
W

m

-J
CO

UJ
..I

O

I--
CO
UJ
.-j
O
rc-
n

0
0

Z
,el
I,Ll

0

l

(.'3
Z
B

1-

111
I-

Z
m

El
0

_z
_z
<
c_
I.-

Z

0

<

IJ_ CO

t7

Z

0

<

<

CO
11. CO

A. Kouchakdjian
Univ. of MD
13 of 22

O

O

_rJ

¢j

t_

W
t_
m

m

rt_

O
O

O_
W
0
0
a:

ill

8

Z

iii

_l .,4

o0

0 0

iii
gO

0
0
n"
Z

ILl
_!
0

--i

0
m

A. Kouchakdjian

Univ. of MD

14 of 22

o
o.
u_
_o

_o
ILl

m

O_

re
13,.
--I
IJJ
O)
..J

O

I

o

t--
rr"
O
I1. o_

0
0

A. Kouchakdjian
Univ. of MD
15 of 22

O_

..J
o'J

O')

ILl

a 8

z__
VN _NV _0 9Vl 01:1:1 _ "_

rn

_, 8o
sm_

o< N
"- B

O::JdO7::::IA_-70:::1000 -i0 39_±N_lOl::13d

A. Kouchakdjian
Univ. of MD
16 of 22

_m

ILl
m

..]

..!
W

_]

O
O

O

_IIIIIIIIIIIIIrllllllllIIIIIIIIHIIIIIIIIIIIIIIIIIllllllllllllIIIIIIJIIIrl

g

._J
o

W

o LU
O
rr"

LU
rr"

OO"ISM/SNIqI:::I U:llfld_O0

0

A. Kouchakdjian
Univ. of MD
17 of 22

W

m

..1

O'J

o_

__S

Oa.
m_

8

00"1S_t/SI=IOI:II:F!

A. Kouchakdjian
Univ. of MD
18 of 22

I-.
Or)
W
l--

ILl
!--
03
>-.
03

"!"

O
n-
-i-
I-
-w

Q

¢0

¢q

I,LI
e_
u

.=J
O_

O
I.l.I
--j
O
n-
O.

l

O.

l--
I

O
or)
/

rr'
<
O.

O
O

n-
O

Ll.I
rv"

I--.
n-
O
I.I.

.-I
O
..I
[l.I
¢.0

I-"
rr'

co

_o,.,
rs

I-.
n-
O
I.I.
tl_
I.l.!

O

I.l.I
O:

-.I
I.i.!
Or)

._l
<
O
I

O.

Od
O
:D

LIJ
I"

_.l :D
O O

t'r"
-1-
i---
-to

¢sl

o

¢..)

A. Kouchakdjian
Univ. of MD

19 of 22

ILl

m

..I
¢/)

coo
m

ao
!11

0
IU

F-

u

0

(.)

A. Kouchakdjian
Univ. of MD
20 of 22

tU

m

===1
O_

O

I

I--

rr

_.i

0J

O
I---

I--
Or)
iii
I--

n---
W_

0
o

Z

0
On"

_W

a_

0 _ t'_ LO CO _ CO it)

(0

CO

LO

0
W

0
UJ

0
rr
n

- 0 _

o
z o

o o
3d_ 17_V_ _

Z

A. Kouchakdjian
Univ. of MD
21 of 22

,e.-

ro

T"

ill

..I

LU

O<
O

<
LIJ

O

CO
m

<
Z
<
I-
Z
LI.I
re
re

O
LU
I"
tU
...I
IZ.

O
O

i-ra
it.

re
Ill

O
I-I.-
COZ
COW
ua_
Oz
O0
ren-

reZ
Ow

<w
!- CO

'< 0
0,I_
re 11.
O= O=
n <

0
Z Z

--
,-- I==
CO CO
iii iii
r_ i-
I I

Z
0
I--
0

r_
0
re
O=

.J
I,U
CO

_I
<
Z
0
l-
m

.<
0
I-

n. re
nO
.<u.
LULl.
reUJ

CO
CO
LU
CO
CO

re

A. Kouchakdjian
Univ. of MD
22 of 22

tO

O

tO
to

(.)

¢,,O

UJ

m

.J
O_

SESSION 2 -- METHODOLOGIES

M.. S. Deutsch, Hughes Aircraft Co.

B. I. Blum, APL

H. D. Rombach, University of Maryland

5794

PREDICTING PROJECT SUCCESS FROM THE SOFTWARE
PROJECT MANAGEMENT PROCESS: AN EXPLORATORY ANALYSIS

Michael S. Deutsch

Hughes Aircraft Company
c/o Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Sponsored by U.S. Department of Defense

Abstract

The paucity of significant empirical data relating the software management process to quantitative
project performance is the motivation for this study. A conceptual causal model characterizes the factors
of adversity that may be present on a project along with the factors of management skills that are available
to neutralize or overcome the adversity; the residual effect, called net turbulence, is hypothesized to
relate quantitatively to project business and technical performance. An informal exploratory data analysis
on 24 projects has been undertaken to determine the feasibility of the conceptual model and to identify
more precise hypotheses for more formal study. The non-parametric coefficients of correlation for net
turbulence and both project technical and business performance are 0.65, suggesting that the basic
hypothesis of this model is feasible. Other interesting relationships involving risk management, project
adversity, business constraints, and precision of technical scope definition deriving from the exploratory
analysis are discussed.

BACKGROUND

Large contemporary R&D engineering projects for a wide variety of systems
such as communications, process control, command and control, large scale data
retrieval, and military applications are becoming increasingly software intensive,
challenging human capacity to manage resulting intellectual complexity. The relative
immaturity of the software engineering discipline has injected new uncertainties in
human, business, and technical variables into these projects. There is relatively little
empirical basis beyond the experience of individual managers to connect models of
software project management with actual levels of success achieved. The approach to
managing large scale intellectual efforts involving, perhaps, hundreds of people on
software intensive systems has been based almost entirely on theory-based,
anecdotal, or single-case study considerations rather than on any systematic empirical
investigation into what factors actually contribute to positive software project
performance. This paper describes an empirical study that addresses this gap.

A conceptual model of the software project management process is set forth that
is asserted to relate to actual project performance. The scope of this paper is to: 1)
describe this model; and 2) present an exploratory investigation that seeks to establish
the feasibility of the conceptual model and sharpen its associated hypotheses. The

longer range goal is to evaluate the predictive validity of the software management
process on project performance through prospective observations from ongoing
projects; but this will occur over a number of years. At present, the more modest and
practical goal is to determine this feasibility based upon concurrent validity of
retrospective data from completed projects. The exploratory feasibility analysis is

M. Deulsch

Hughes
1 of 38

based upon data from 24 projects that was informally collected; this exploratory
analysis is in itself encouraging and interesting.

The intent of this investigation is to identify factors that discriminate between
successes and non-successes on software projects. By looking backward from a
successful result, a broader view of the management and technical actions that
achieved the success can be viewed and contrasted against those from less
successful projects. Unfortunately, measuring success in the traditional dimensions --
technical, schedule, and cost performance -- is frequently an inaccurate gauge by
itself. The novelty content and technology demand of large, software intensive
systems frequently yield results that are less than full expectations (in the traditional
dimensions), yet many projects are considered successful nonetheless especially
when an adverse and difficult project situation is at least partially overcome. This
study probes into these further aspects of success by characterizing the factors of
adversity that may be present in the project environment and the factors of
management skills that may be put forth to manage and overcome this adversity.
These are then related to both project technical and cost/schedule performance
factors.

This empirical study is outlined in the following paragraphs by recounting
related studies, defining the conceptual model and its components, delineating the
causal hypotheses associated with the model, and summarizing an exploratory data
analysis of 24 projects.

RELATED STUDIES

Practically all previous empirical research and investigation into project success
factors have embraced a broad non-specific scope of general project situations such
as construction, equipment, studies, services, or testing. Only a small subset of these
studied projects appear to be of an R&D nature. Even less attention has been
attributed to software projects.

The most prolific recent researchers in this field have been Pinto and Slevin.
Among their contributions has been the development of a project implementation
profile [1,2], a validated questionnaire tool for probing project success factors based
upon a ten factor management process model. Schultz, Slevin, and Pinto have
documented [3] a sample of five attempts by different researchers to determine critical
success factors from which it is possible to discern some general factors. Pinto and
Prescott [4] have further examined a set of five basic hypotheses embracing the ten
factor project implementation profile against 408 projects from the manufacturing and
service sectors; the results indicate that the relative importance of several of the critical
factors change significantly over the project life cycle. Murphy, Baker, and Fisher [5,6]
have studied 646 projects, primarily manufacturing and construction, illuminating
those positive determinants and those negativedeterminants that are necessary to be
encouraged and discouraged respectively to achieve potential success. The classes
of projects involved in these studies render the results interesting, but they are
applicable to R&D software intensive projects only in the most general sense.

2 M. Deutsch

C_ Hughes" 2 of 38

One significant investigation of success factors for software specific projects is
the study by Curtis, Krasner, and Iscoe [7] of 17 large client projects of the
Microelectronics and Computer Technology Corporation. Their findings, concluded
from an interview process, focus on the richness of application domain knowledge,
fluctuating and conflicting requirements, and communications bottlenecks as the
factors most influential on success. Another study of partial pertinence is the
methodology for identifying critical success factors for management information
sy.stems developed by Boynton and Zmud [8].

A related area of activity over the past decade has been the development,
maturation, and practical usage of parametric cost estimation models for software
projects. These models address project success factors in a limited sense by
predicting labor effort, schedule, and productivity based upon inputs of project size
and characteristics. The models and associated investigations conceived by Boehm
[9], Jensen [10], and Vosburgh, Curtis, Wolverton, et al [11] are representative of this
work.

None of the cited related studies have attempted to broadly relate success
factors in the software management process to quantitative project performance. This
is a major goal of the study described in this paper.

CONCEPTUAL MODEL OF PROJECT SUCCESS

A hypothetical model relating project performance to the project management
process was conceived by the author and refined as a result of consultations with
colleagues in industry and government. The major thesis of this model is that project
performance can be roughly predicted based upon how effectively the "power" of the
management process cancels out the adverse attributes of the project; the residual of
the cancellation effect between the management power and project adversity is
referred to as the "net turbulence" of the project. The structure of this hypothetical
model is displayed on Figure 1. The major hypothesis of the model is that the
predictive measure, net turbulence, should be strongly correlated with the dependent
measures of project success, technical and business performance.

The model is intended to depict the collective behavior of the three major
parties who collaborate during a software system development: the eventual user of
the system, the customer who financially sponsors the development, and the
contractor who performs the system development. These three constituencies may be
separate agencies, or they may belong to the same company or organization.
Whatever the organizational configuration, the three roles are invariably identifiable.

Project adversity represents "facts of life" over which the three parties have, at
best, a secondary level of control. Management power, on the other hand, symbolizes
those factors where a primary level of control exists within the three parties at the
project management level. The more detailed causal relationships between these
variables reflecting the formation of the net turbulence parameter is presented shortly.

The factors associated with technical performance, business performance,
project adversity, and management power-are delineated on the figure and defined
below.

3
M. Deutsch

Hughes
3 of 38

Cost

Schedule _

Net
Turbulence

Project
Adversity

Size

Character

Interfaces

Business Constraints

Technical Constraints

User Satisfaction

Requirements
Achievement

Technical
Performance

Management
Power

Personnel

Resources

Dialogue

Scope Definition

Risk Management

Planning/Control

Interface Management

DEPENDENT

MEASURES

PREDICTIVE

MEASURES

FIGURE 1 : HYPOTHETICAL MODEL OF

PROJECT SUCCESS

T_¢hnical Performance Factor Definitions

1. User satisfaction. The degree that users of the system we_'e satisfied by

system performance.
2. Requirements achievement. The degree that the specified functional,

performance, external interface, operational scenario, and quality
requirements were satisfied.

Business Performance Factor Definitions

,

2.

Cost performance. The percentage variance between projected and actual
costs.

Schedule performance. The degree that key schedule milestones were
achieved.

_Pro!ect Adversity Factor Definitions

1. Project size and character. The magnitude of the system product developed
and its attributes that reflect intemal difficulty and complexity.

2. External interface adversity. The attributes of the system that reflect
complexity of interactions with the surrounding external environment.

4 M. Deutsch

Hughes
4 of 38

3. Business constraints. The realism of the cost and schedule budgets for the
project.

4. Technical constraints. Maturity and accessibility of the technology and
process available to accomplish project tasks.

Marlagement Power Factor Definitions

1. Personnel resources. Quality and retention of personnel across the project
phases.

2. Physical/technical resources. Quality of the discretionary physical and
technical resources assigned to the project.

3. User/customer/contractor dialogue. The degree and frequency of the
mechanisms that the three parties used to conduct an on-going
collaboration.

4. Technical scope definition. Clarity, scope, and stability of technical
requirements.

5. Strategic risk management and planning. The scope of strategic planning
measures for life cycle planning and risk reduction.

6. Project planning/controL The scope of tactical measures during project
implementation for business, technical, and risk visibility and control.

7. External interface activities. Provision of appropriate activities and process
steps for interactions with elements external to the system.

THE MANAGEMENT POWER SUB-MODEL

For heuristic purposes, a sub-model of the management process was
constructed based on the seven management power factors defined above. This sub-
model is shown on Figure 2. Conceptually, these factors or major activities tend to
occur in a certain order while controlling the technical development. They embrace
the traditional management functions of planning, organizing, staffing, directing, and
controlling. It is recognized that some concurrency and iteration are present in the
general pattern indicated on the diagram. Significant revisiting of previous plans and
baselines may occur at each major activity as a result of a continuing dialogue
between the user, customer, and contractor. Breakdowns in this communication
process have been a major cause of unfulfilled project goals [6]. Paramount to this
management process is the influence of this dialogue in temporally adjusting the
definition of the technical scope as the project's needs become better understood. It
can be argued, on an anecdotal basis, that misdefined technical scope is a major
source of risk for software intensive systems [12].

Each of the seven management power factors are described below in more
detail. The significance of the factor is discussed and a number of considerations and
issues component to that factor are raised. These considerations and issues
represent questions that project management should be analyzing beginning with
project conceptualization to judge whether the power of the management process can
overcome the project's adversity. Each question has a scale of discrete responses,
not indicated here, that was included in the informal questionnaire used to collect
exploratory data.

5
M. Deutsch

Hughes
5 of 38

Strategic Risk Management�Planning Factor

The initial step of management planning should entail selection of a life cycle
plan of phases appropriate to the risk and adversity level of the project including, for
example, consideration of risk reduction measures such as concept exploration
phases and/or prototyping. This level of planning may occur before there is a
commitment to project implementation.

Considerations:

• Which risk reduction measures were included in the project life-cycle before
commitment to full-scale development?

• Is a life cycle cost analysis part of the scope of work?
• Are user operational staff levels included in system tradeoffs?
• Is a design-to-cost approach part of the system tradeoffs?

1

User/customer/connactor

dialogue

Strategicrisk
management

and planning

Technical

scope
def'mition

Personnel

l'esol.l/_es

Physical]
technical

resources

Project
planning/

control

External

interface

management

FIGURE 2: MANAGEMENT PROCESS MODEL

Technical Scot)e Definition Factor

Although the technical scope definition may be time varying, there should exist
a baselined consensus between user, customer, and contractor that evolves in a

controlled way.

Considerations

• How well are functional requirements specified?
• How well are performance characteristics specified?
• How well are operational scenarios specified?
• How well are system qualification requirements specified?

6 M. Deutsch

Hughes
6 of 38

• How well are operational personnel and post deployment support
requirements specified?

• How well are computer-human interface requirements specified?
• How well are quality requirements specified?
• Are requirements under change control?

Personnel Resources Factor

A clear issue here is the initial selection of personnel with the right blend of
applications expertise and functional disciplines. Selection of personnel invariably
requires a negotiating process. Neglect of this factor defaults to use of people who are
conveniently available regardless of their value to the project [1]. Another major
consideration is the retention of a skilled cadre of personnel who remain on the project
through testing and at least initial post deployment maintenance.

Considerations:

• To what degree are personnel experienced in the required functional
disciplines available?

• To what degree are personnel experienced in the required applications
areas available?

• How skillful is the contractor project manager?
• How skillful is the customer project manager?
• How skillful is the user representative?
• What is the skill level of the engineers/application experts who remain on the

project through testing and transition to operations?
• How sufficient is the engineering and application expertise of the initial post

deployment maintenance team?

Phvsical/'l'echnical Resources Factor

These are the resources that constitute the environment that surrounds the
project development. Management usually has a primary level of control of selection
of these resources.

Considerations:

• How mature is the selected computing hardware and support software?
• How mature are the Software engineering support tools?
• To what degree are the needed facilities available to the project?

Project Plannino and Control Factor

The monitoring, feedback, and risk control mechanisms in this factor give
management the visibility into evolving problems and ability to oversee corrective
actions.

7
M. Deutsch

Hughes
7 of 38

Considerations:

• Is there a project function (e.g., a system engineering team) with central
responsibility to define technical requirements, perform technical tradeoffs,
assess risk, and evaluate evolving products?

• Is an actual rate of technical accomplishment periodically compared to a

planned rate?
• Has a set of risk parameters critical to project success been delineated and

periodically reviewed?
• Are estimates of cost and schedule for the completion of the project

periodically assessed and Updated?
• Is there a pdoritized ranking of technical requirements mutually recognized

by user, customer, and contractor that is periodically updated and reflected in
incremental development plans?

• Are user operational scenarios included in system and acceptance testing?

External Interface Activities Factor

This factor includes activities to assure that the project interacts with and
understands the needs of the larger external environment. This is especially critical for
embedded software systems.

Considerations:

• Is there an on-going liaison with suppliers of other interfacing
systems/elements to assure proper interfaces and allocations?

• Is early external interface testing with outside systems part of the integration
plan?

• To what degree are externally provided elements validated?
• How frequently were external interfaces modified before the preliminary

design review or equivalent?
• How frequently were external interfaces modified after the I_reliminary design

review or equivalent?

User/Customer/Contractor Dialoaue Factor

Each of these parties may have diverging goals with each not fully cognizant of
the others' constraints. The dialogue process addresses the reconciliation of these
goals to promote a win-win situation satisfactory to these constituencies. Boehm's
Theory-W for software project management establishes principles for this dialogue
[13].

Considerations:

• If multiple user organizations are involved, how well are users' needs being
managed and reconciled?

• To what degree is there ongoing collaborative contacts between user(s),
customer, and contractor to assure the correct content is in the technical

requirements?
• To what degree does the user(s) participate in formal design reviews?

8 M. Deutsch
Hughes
8 of 38

• Are the user(s) and contractor represented on the customer's change control
board?

• Is the user-customer-contractor interaction addressing a post deployment
_, °_nnrt approach?

THE PROJECT ADVERSITY SUB-MODEL

The effect of the five adversity factors noted on Figure 1 - project size, project
character, external interfaces, business constraints, and technical constraints - offset
the management power factors to estimate the net turbulence of a project. A causal
effect schema between the adversity variables, management power variables, and
project performance is outlined momentarily. The considerations of each adversity
factor are delineated below. These also have a scale of discrete responses not
reproduced hera.

Project Size and Character Factor

The sheer magnitude, complexity, and difficulty of the system is a reasonable
first approximation of adversity.

Considerations:

• Approximately how many new lines of source code must be developed?
• How many distinct user agencies or organizations are involved?
• How many parallel operational versions of the same software for separate

installations must be maintained?

• What is the degree of user interactive operations?
• How complex is the overall architecture of the system?
• If the software of this system failed, what would be the most severe impact?
• What degree of new technology (e.g. algorithms, security, protocols)

development is required?
• How stringent are the real-time aspects of this system?

External Interface Adversity Factor

A major aspect of complexity and adversity is the degree that this system must
interact with outside systems and elements.

Considerations:

• How many major external systems or elements does this system integrate or
interoperate with?

• How many of the above interfaces require real-time or on-line
synchronization?

• To what degree did externally supplied components meet technical
expectations?

• How many interoperating systems or elements are undergoing development
in parallel with this system?

9 M. Deutsch

Hughes
9 of 38

Business Constraints Factor

A major challenge of project management is to achieve a balance between
technical scope and assigned cost/schedule resources. When the cost and schedule
are insufficient to meet the technical requirements, heroic and skillful management
efforts become necessary to achieve even a partial success. Project managers
usually understand the severity of the imbalance even at project inception, but may not
be able to influence a more favorable balance because of various contractual,

political, or business factors.

Considerations:

• How sufficient was the original cost baseline for this project?
• How realistic were the original key milestone dates for this project?

Technical Constraints Factor

Another source of adversity is the availability or scarcity of technical resources.

Considerations:

• How mature is the technical software engineering process used by the
developing organization?

• How adequate are the available computer resources for field operation of the
software?

• How adequate are the available computer resources for development of the
software?

• Are the implementation standards a good fit to the size, type, complexity, and
criticality of the project?

PROJECT PERFORMANCE SUB-MODEL

This sub-model embraces the business performance and technical
performance factors which are shown on the left side of Figure 1. The considerations
of each performance factor are delineated below. These questions also have a scale
of discrete responses:

Cost and Schedule Performance Factors

Recounting both cost and schedule performance data is problematic because
many projects undergo technical, cost, and schedule scope changes before they are
completed. Changes to these baselines occurring late in the project may simply reflect
the de-facto situation that cost/schedule and technical scope were imbalanced
previously, and the change merely formalizes a reality that had been present for some
time. Hence, use of final recorded cost and schedule variances could be an
inaccurate gauge of business performance. Recovery of useful business performance
data may necessarily rely on the subjective recollection of the survey respondents. A
general guideline is that cost/schedule performance information is desired that
represents the predominant baseline that existed over the longest duration of the

10 M. Deutsch

Hughes
10 of 38

project's development cycle. A more specific guideline is to estimate cost/schedule
performance against the last project baseline change before the midpoint of the
development schedule; this should discriminate "intelligent" scope changes from late
reactive changes that might mask the true variances.

Cost performance factor consideration:

• To what degree did this project meet cost targets for its predominate budget
and technical scope baseline?

Schedule performance factor considerations:

• To what degree were key integration milestones with interoperating systems
or external elements achieved on schedule?

• To what degree did this project achieve its initial operating capability on
schedule?

User Satisfactioq FaVor

The most obvious and visible issue of success is user acceptance of the system.
This is key whether the user is external or internal to the organization that developed
the software. User satisfaction may change over time as modifications are made
based on initial operational experience.

Considerations:

• How satisfied were the users with system performance at initial delivery?
• How satisfied were the users with system performance six months after initial

system delivery?
• How satisfied are users with system performance today?

Reauirements Achievement Factor

Achievement of requirements does not necessarily guarantee user satisfaction
especially if the requirements do not accurately represent the user's needs. In this
investigation it is important to understand the interplay between user satisfaction,
requirements achievement, and the user/customer/contractor dialogue with respect to
project success.

Considerations:

• To what degree were specified functional requirements satisfied?
• To what degree were specified performance requirements satisfied?
• To what degree were specified external interface requirements satisfied?
• To what degree were specified user operational scenarios satisfied?
• To what degree were specified quality requirements (e.g., reliability, security,

safety, maintainability, expandability, etc.) satisfied?

11
M. Deutsch

Hughes
11 of 38

CAUSAL RELATIONSHIPS AND MODEL HYPOTHESES

The specific causal relationships between the adversity factors, management
power factors, and project performance are delineated here. Theserelationships
provide the structure for the formation of the net turbulence parameter that is
hypothesized to relate significantly to project performance. During the conception of
this causal model, it became necessary to envision the interaction of project adversity
and management power at a more detailed level involving the individual
considerations of some of these factors.

These interactions, constituting net turbulence, are diagrammed on Figure 3.
The additional pseudo-factors of business risk management, technical risk
management, external interface management, and user need management are
introduced to detail the combination of adversity and management power parameters.
The business risk management pseudo-factor is representative of this combinatorial
concept. Here, business (cost/schedule) constraints were identified as a key adversity
aspect that must be managed and controlled. The items that are hypothesized to
overcome this type of adversity are a clear technical scope definition and the existence
of a set of prioritized requirements that are incorporated into incremental development
plans; these would help achieve a working partial system within the cost/schedule
constraints.

The other pseudo-factors follow this same concept of identifying a specific
adversity that must be controlled and hypothesizing the specific management
variables that would neutralize the adversity. There is much to recommend in this line

of thinking as an operational model for software project management.

The remaining management power factors of user/customer/contractor
dialogue, personnel resources, physical resources, strategic planning, and project
planning/control are hypothesized to have a general positive impact on project
technical and business performance. Likewise, the remaining project adversity factors
of project size/character and technical constraints are forecast to generally influence
project performance negatively. The combined effect of these factors and the pseudo-
factors is the net turbulence.

Figure 3 shows forward feeding paths to project performance labeled with "+" or
"-" characters signifying the direction of contribution to performance. Also included are
feedback loops that suggest the key dynamic interactions between Parameters that
would cause variation over project lifetime. There may be potential and value to
eventually construct a system dynamics model of the broad software management
process based on these causal relationships. At present, however, the compelling
need is much more fundamental: to understand the degree of influence of
management variables and project attributes on the technical and business
performance of projects.

In summary, the basic hypotheses for exploration are stated below in natural

language:

12
M. Deu|sch

Hushes
12 of 38

1. Degree of business risk management - consisting of the net effect of
business constraints, techn.ical scope definition, and requirements
prioritization - has a significant positive effect on project performance.

2. Degree of technical risk management - consisting of the net effect of
technology development, risk mitigation measures, and risk monitoring - has
a significant positive effect on project performance.

3. Degree of external interface management - consisting of the net effect of
external interface adversity and interface management activities - has a
significant positive effect on project performance.

4. Degree of multiple user need management - consisting of the net effect of
number of user agencies and multiple user reconciliation activities - has a
significant positive effect on project performance.

5. The degrees of user/customer/contractor dialogue, personnel resources,
physical resources, strategic planning, and tactical project planning/control
each have a significant positive effect on project performance.

6. The degrees of project size/character and technical constraints each have a
significant negative effect on project performance.

7. The level of net turbulence - consisting of the net effect of all the above
factors - has a significant influence on project technical and business
performance.

EXPLORATORY DATA ANALYSIS

An exploratory data collection and analysis on 24 projects was undertaken in
order to gain insights into the feasibility of the hypothetical model diagrammed on
Figure 1 and its associated hypotheses. The data collection instrument was an
informal, unvalidated questionnaire with content very similar to the factors and
considerations discussed in the prior sections of this paper.

The respondents to the questionnaire were an opportunistic mix of software
managers and senior engineers who are developers of software systems or customers
who sponsor software system developments. Some of the respondents had access to
their historical files while some did not. The data is thus of varying reliability. Hence,
any conclusions or insights from the analysis are solely exploratory to sharpen
hypotheses for further formal study. No inferential statistical meaning is attached.

The exploratory analysis is summarized here by navigating through the
relationships of the model depicted on Figures 1 and 3. The dependent measures of
success are examined first followed by a probing of the relationships between the
predictive and dependent measures.

Each respondent who filled out the exploratory questionnaire was asked to
indicate whether the subject project was considered to be successful or unsuccessful.
Figure 4 shows a plot of business performance score versus technical performance
score for 24 projects with a discriminating coding for successful and unsuccessful
projects as perceived by the respondents. The scoring was constructed simply by
projecting the respondents answer to the discrete choices of each question on to a 10
point scale (10 is most favorable, 0 is most unfavorable), averaging the responses for
each factor, and averaging the factors for the overall performance scores. The

14
M. Deutsch
Hughes
14 of 38

graphical plot portrays the appearance of a bimodal distribution suggesting these key
issues:

• Respondents view successful projects, unsurprisingly, as combined technical
and business successes (note the aggregation of successful projects in the
upper right corner).

• Is there a perceived threshold of unacceptable business performance (at
about business performance score "5") regardless of level of technical
performance?

10-

m

m

1

6_ °

5-

4-

O

2_

lm

0 •

o

ESPONDENTS" PERCEPTION:_'_

successful project l

unsuccessful project. J

0 I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10

BUSINESS PERFORMANCE

FIGURE 4: TECHNICAL/BUSINESS PERFORMANCE RELATIONSHIP

A "5" on the business performance scale corresponds to approximately a 25-50% cost
overrun and a 3 month schedule slip. The existence of a perceived threshold for
business performance on successful projects is identified as an additional hypothesis
for further study.

15
M. Deutsch

Hughes
15 of 38

The overall thesis of the hypothetical model exhibited on Figure 1 is that there
should be significant correlation between the predictive measure of success, net
turbulence, and the dependent measures, business and technical performance. The
graphs of net turbulence against project technical and business performance, plotted
on Figure 5, visually shows a general and at least moderate correlation between these
variables. The Spearman non-parametric rank coefficient of correlation for technical
performance on these 24 projects is 0.66 and for business performance is 0.63. This
indicates that the probability of a chance correlation is less than 0.002, below the
traditional 0.05 threshold. This correlation level seems even more significant,
qualitatively, since the business performance (cost/schedule) component is inherently
"noisy" data because of the retrieval difficulties annotated previously. Thus, the basic
hypothesis that net turbulence should be significantly correlated with, i.e., predictive of,
project performance is evidently feasible and should, thus, be pursued further.

TABLE 1" COMPOSITE FACTORS/PERFORMANCE RELATIONSHIP

All projects High adversity projects

Technical Business Technical Business
performance performance performance performance

Net turbulence 0.66 0.63 0.66 0.77

Technical risk management 0.43 0.25 0.65 0.59

Business risk management 0.58 0.70 0.58 0.82

External interface management 0.50 0.62 0.51 0.72

Multiple user need management 0.59 0.60 0.70 0.49

User/customer/contractor dialogue 0.48 0.49 0.56 0.44

Strategic planning 0.30 0.02 0.42 0.41

Personnel resources 0.64 0.68 0.60 0.82

Physical resources 0.25 0.44 0.34 0,62

Project planning and control 0.69 0.41 0.73 0.71

Project size and character -0.06 -0.34 0.07 -0.11

Technical constraints -0.48 -0.27 -0.55 -0.28

A full report on the contributions to project performance of each of the composite
factors included in the causal model displayed on Figure 3 is enclosed on the matrix in
Table 1. This delineates the intercorrelations (Spearman coefficient) of these factors
against technical performance and business performance in two categories--all
projects and only higher adversity projects of score >0.5. The following observations
are made concerning the set of all projects:

16 M. Deutsch
Hughes
16of 38

|

|

I I I I I I I I i I

SS_NISflB

o 0

n

Z
0

W
OC
W
o
Z
W
_J

n7
OC

W
Z

o

o

I I I I I I I I I

HD_Off'd_td
"IVDIIqI-ID;H.

e-_

_o
L_

_D

0

W
C)
Z
<

E
0
Ii
E
LU
n

h-
C)
W

0
rr
n

W
E-

u_

17 M. Deutsch

Hughes
17 of 38

1. The strongest contributing composite factor to performance, overall, is
quality of personnel resources.

2. Other factors highly influential on performance are business risk
management, external risk management, multiple user need management,
and project planning/control.

3. Counter-intuitively, strategic planning and project size/character have a
lesser effect on performance than expected.

Some contrasting potential tendencies for higher adversity projects are:

1. Most factors display a larger performance influence than for the full project
set, especially degree of technical risk management, strategic planning,
physical resources, and project planning/control.

2. Counter-intuitively, project size/character exhibits a declining effect on
performance. A subset of the considerations that aggregate into this factor
do show more substantial performance relationships, particularly code
volume to be developed.

The above views on adverse projects suggest a further general hypothesis for
consideration: management power and its factors will be more significantly correlated
to project performance for higher adversity projects. This reflects the need for a more
complete and sophisticated management mechanism on difficult, complex systems.

The contrast between the general set of projects and adverse projects is
displayed in more detail on Table 2. The dozen individual consideration questions
(components of the factors on Table 1) most correlated to technical and business
performance are exhibited for each project category. The following key and interesting
observations emerge for the complete project set:

1. In integrating across technical and business performance, personnel quality
in three categories are significantly correlated with success - experience in
functional disciplines and applications, skill of test/transition team, and skill
of initial maintenance team. This illuminates the positive significance of
personnel retention as the project progresses from development into
operations and maintenance.

2. The existence of a central project function for technical definition and control
(e.g., a system engineering organization) appears as a major driver on
technical success.

3. Individual aspects of technical scope definition, user/customer/contractor
dialogue, interface management, and risk control are present as significant
performance contributors consistent with intuition.

The adverse projects exhibit many of the same tendencies as the full project set,
but also display some significant contrasts:

1. The drivers on business performance seem to be more influential overall.
2. Review of risk parameters and inclusion of user operational scenarios in

testing are greater determinants in both performance categories.

18 M. Deulsch

Hughes
18 of 38

TABLE 2: MOST INFLUENTIAL INDIVIDUAL MANAGEMENT CONSIDERATIONS

Technical performance (all projects)

• How well operational personnel/support 0.77
requirements specified

• Engineering and application expertise 0.73
of the initial maintenance team

• Central project technical 0.66
definition function

• Management/reconciliation of 0.62
multiple users'needs

• Cost/schedule estimates for project 0.60
completion periodically assessed

• Skill level of team that remains on project 0.58
through testing and transition

• How well functional requirements 0.58
are specified

• Collaborative usez/customer/contractor 0.57

contacts to assure correct requirements
• Actual technical accomplishment periodically 0.57

compared to a planned rate
• Risk reduction measm'es included in 0.53

life-cycle before full-scale development

• Set of risk parameters delineated 0.53
and periodically reviewed

• How well computer-human interface 0.53
requirements are specified

Business performance (all projects)

• Engineering and application expertise 0.73
of the initial maintenance team

• Cost/schedule estimates for project 0.67
completion periodically assessed

• Skill level of team that remains on project 0.62
through testing and transition

• Personnel experienced in required 0.58
functional disciplines & applications

• How frequently external interfaces 0.54
modified after preliminary design review

• Management/reconciliation of 0.52
multiple users' needs

• User(s) and contractor representation on 0.52
the change control board

• How frequently external interfaces 0.48
modified before preliminary designreview

• Prioritized ranking of technical requirements 0.46
reflected in incremental plans

• User(s) participation in 0.41
formal design reviews

• Collaborativeus_/customer/contractor 0.39
contacts to assure correctrequirements

• On-going liaison with suppliers of other 0.39
interfacing systems/elements

Technical performance (adverse projects)

• How well operational personnel/support 0.79
requirements specified

• Set ofrisk parameters delineated 0.78
and periodically reviewed

• Personnel experienced in required 0.73
functional disciplines & applications

• Collaborative user/customer/contractor 0.72

contacts to assure correct requirements
• Management/reconciliation of 0.71

multiple users' ne,_ls

•Engineering and application expertise 0.70
of the initial maintenance team

• Skill level of temn that remains on project 0.68
through testing and transition

• Central project technical 0.66
definition function

•How well functional requirements 0.65

are specified ,.
• How frequently external interfaces 0.65

modified after preliminary design review
• User operational scenarios included in 0.61

system testing

• Cost/schedule estimates for project 0.58
completion periodically assessed

Business performance (adverse projects)

• Cost/schedule estimates for project 0.85
completion periodically assessed

• How well operational personnel/support 0.76
requirements specified

• Prioritized ranking of technical requirements 0.75
reflected in incremental plans

• How well system qualification 0.73
requirements are specified

• Set of risk parameters delineated 0.71
and periodically reviewed

• Personnel experienced in required 0.70
functional disciplines & applications

• Skill level of team that remains on project 0.66
through testing and transition

• Engineering and application expertise 0.66
of the initial maintenance team

• User operational scenarios included in 0.66

system testing
• Actual technical accomplishment periodically 0.61

compared to a planned rate

• How well operational scenarios 0.59
are specified

• How well performance characteristics 0.58
are specified

19
M. Deutsch
Hughes
19 of 38

3. Technical performance is more influenced by interface stability, and
business performance is more affected by by ranking and incremental
development of technical requirements.

The individual characteristics of the adverse projects group seem to be representative
of the need for a more precise management process for these projects especially
regarding risk management, external interface management, and system testing.

Another exploratory path is to examine sources of project risk and hypothesize
the management power variables that could successfully manage the risks. Two
major risk parameters are asserted to be:

• Unrealistically optimistic cost and schedule allocations characterized by a
"business constraints" rating, and

• Degree of technology development required for a project.

In the causal model depicted on Figure 3, the business constraint rating was
combined with the degree of technical scope definition and degree that requirements
were prioritized and included in incremental development plans forming the business
risk management pseudo-factor. An example insight into this interaction is on Figure 6
where project business constraint ratings are plotted against technical performance. It
can be seen that a full range of performances are possible when cost and schedule
allocations are severely constrained; a "10" is most unfavorable, indicative that a
miracle was envisioned when these allocations were made. The numbers plotted next
to each point reflect the precision of the technical scope definition; higher magnitudes
are favorable. There is now evident a tendency for the projects with severe
cost/schedule constraints (say, 7.5 or greater) to attain better performance when there
is better clarity of technical scope definition. It is likely on these projects that, despite
unrealistic cost and schedule allocations, management is better able to effectively
apply implement-to-schedule strategies when the technical goals are well established
and accomplish a reasonable level of success despite the adversity. The
requirements prioritization ratings, enabling implement-to-schedule strateg!es,
overlaid on this same graph show a similar tendency. An analogous drift is also
present for business performance. The correlations of business risk management with
the various performance categories are rather significant as indicated on Table 1.

An analogous insight is depicted on Figure 7 where the technology
development rating is plotted against technical performance. A full spectrum of
performances is seen to be present. The overlaid numbers represent the additive
effects of risk m_tigation activity and degree of risk monitoring. There is apparent a
tendency for the better performance projects to be associated with higher combined
risk management/monitoring ratings. The net effect of these three parameters is the
technical risk management pseudo-factor included in the causal model on Figure 3.
The correlations of this factor with the various performances was shown on Table 1
with the high adversity projects much more significantly affected.

These are but two examples of a multitude of multi-factor causal relationships
that present opportunities for study.

20 M. I_uLsch

Hughes
20 of 38

<2

Z

0

8.6
7.1
9.1

4.6

9.1 6.2= 6.2

6.T_18.0

6.3", 7.2

*5.7

.7.3 *7.4

ol.4

m

2-

1-

I Overlays are technical iscope def'mition factor
I

I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10

favorable BUSINESS CONSTRAINT RATING unfavorable

FIGURE 6: BUSINESS RISK MANAGEMENT INTERACTIONS

,5.8

,6.4

o4.3

o3.0

02.2

02.5

03.8

<
(.)

,17.1

,4.3

6 "_o 1.4
/

:1
3-

2-

1-

I0.0 -:,5.7 20.0 •

10.9 **1.4 19.0 °

=10.4 15.0 "

o18.6 2.0 o

17.0

06.0 4.0 *

0

Overlays are combined
risk mitigation and risk

monitoring rating

2.9
O

I
° 1.4

3.0 o

I I I J ' I I I I I I
0 1 2 3 4 5 6 7 8 9 10

favorable unfavorable
TECHNOLOGY DEVELOPMENT RATING

FIGURE 7: TECHNICAL RISK MANAGEMENT INTERACTIONS

21 M." Deuts¢h

Hughes
21 of 38

CONCLUSION

The exploratory data analysis has suggested a heightened confidence in the
conceptual model and its causal relationships. The key hypotheses have not been
significantly contradicted with the exceptions noted. Several additional hypotheses
dedving from the exploratory analysis were noted and merit further further study.

The basic eventual contributions of this study after further development and
data collection are envisioned to be:

1. A general increased understanding of the dynamics and effects of project
management actions;

2. An aid to practicing project managers so that they may make key
management process decisions with a more visible and predictable impact
on project performance; and,

3. An instructional instrument to educate project managers by systematically
representing past experience in the form of lessons learned.

REFERENCES

. D. P. Slevin and J. K. Pinto, "The Project Implementation Profile," Project
Management Journal, September 1986, pp. 57-70.

. J. K. Pinto and D. P. Slevin, "Critical Factors in Successful Project
Implementation," IEEE Transactions on Engineering Management, vol. EM-34,
no. 1, February 1987, pp. 22-27.

. R. L. Schultz, D. P. Slevin, and J. K. Pinto, "Strategy and Tactics in a Process
Model of Project Implementation," Interfaces, vol. 17, no. 3, May-June 1987, pp.
34-46.

. J. K. Pinto and J. E. Prescott, "Variations in Critical Success Factors Over the
Stages in the Project Life Cycle," Journal of Management, vol. 14, no. 1, pp. 5-18.

.

.

B. N. Baker, D. C. Murphy, and D. Fisher, "Factors Affecting Project Success," in
Project Management Handbook, eds. D. I. Cleland and W. R. King, (New York:
Van Nostrand Reinhold Co., 1983), pp. 669-685.

D. C. Murphy, B. N. Baker, and D. Fisher, "Determinants of Project Success,"
NASA NGR 22-03-028, NTIS N-74-30392, 1974.

. W. Curtis, H. Krasner, and N. Iscoe, "A Field Study of the Software Design
Process for Large Systems," Communications of the ACM, vol. 31, no. 11,
November 1988, pp. 1268-1287.

. A. C. Boynton and R. W. Zmud, "An Assessment of Critical Success Factors,"
Sloan Management Review, Summer 1984, pp. 17-27.

22 M. Deutsch

Hughes
22 of 38

1

10.

11.

12.

13.

B. W. Boehm, Software Engineering Economics, (Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1981).

R. W. Jensen, "An Improved Macrolevel Software Development Resource
Estimation Model," Proceedings Fifth Annual IPSA Conference, St. Louis, MO,
April 26-28, 1983, pp. 88-92.

J. Vosburgh, B. Curtis, R. Wolverton, B. Albert, H. Malec, S. Hoben, and Y. Liu,
"Productivity Factors and Programming Environments," in Proceedings of the
Seventh International Conference on Software Engineering, Orlando, FL, March
1984, pp. 143-152.

B. W. Boehm, "A Spiral Model of Software Development and Enhancement,"
Computer, May 1988, pp. 61-72.

B. W. Boehm and R. Ross, "Theory-W Software Project Management Principles
and Examples," IEEE Transactions on Software Engineering, vol. 15, no. 7, July
1989, pp. 902-916.

23
M. Deutsch

Hughes
23 of 38

VIEWGRAPH MATERIALS

FOR THE

M. DEUTSCH PRESENTATION

5794

emml Z
,<
,:1:
if)
,<
z

(/)C
0

(/)

M. Deutsch

Hughes
24 of 38

,<

°"i

_J

elU

C
om

ll

LO

Eo
• _

C _

oE
ll

"--0

.C
0

0

ll

o

0
ll

>
ll

0

C
0
0

0
c_

0

C
ll

E
s_
0
O9O

_0

0
0
0
D

ll

C
0

ll

1

6_
0

|

0
ll

ll

0
>
C

ll

ll

1

ll

c_
ll

0
u_

ll

C

I..-

0

C

1

s_

0
C
0

0

0
ll

0
D

LU
0

M. Deulsch

Hughes
22; of 38

I

o_

mmm

M. Deulsch
Hughes
26 of 38

8

M. Deutsch
Hughes
27 of 38

4

M. Deutsch

Hughes
28 of 38

/

M. Deulsch

Hushes
29 of 38

m

m

M. Deutsch

Hughes
30 of 38

• • Q

I I

/

c_
_J

elm

c_

i
oo

I I

ell

i

Z_

em,,q

m

a,
_,o

v...4

moo

--p...

m_r_

mre_

--c'q

a , N
I I I I

M. Deulsch

Hughes
31 of 38

Z

o_

o_

a:

<

mmm

: °

o
g

i.in

I I i I I i I I

SS_IIS_

o o

I II

I I i I I I I

_K.Dbi_O..x'_Hd
"IVDIh'I-IDKL

o

I I I

e_

=1

0

M. Deutsch

Hughes
32 of 38

.,<

s" d

m

e_

elm

0

o.

(D
(J

_.o

.D
L_

Z

o u3 r-,. u' _. co co r-,. o u_
o d d c_ o o c_ o o d o

!

0 _ 0 O_ t'_ O0 "::1" "- "d"
a_ _ _. _ ._- o _. _ _ _ aJ
o c_ o o d c_ o c_ d o o,

(") _0 0 (3) O0 0 _l" It) 0') CO O0

c_ d c_ o d o o o cS o o

(1) (1) _ (1) O)
E E E E _o

O) O_ O_ _ ---

CI/ _ _l CO 0
E E E E "6

.__ ._ o m
__ L O_ 0 0

_ _l_ _-- 0

.o • "_ o m
e-- _- .-- rJ)

,- -_ .._ = E
0 _ •

I-- rn __ C_.q) .-- "_

X -I

LU _ m
(/)

O)

o_

e-
c-

O
lu

O)
(I)

00

M. Deutsch
Hughes
33 of 38

r_

°_

°_

F

M. Deulsch

Hughes
34 of 38

M. Deulsch

Hughes
35 of 38

r_

t'_ O_4

Q@41, • •

oo r-- o_
• e?

I I

0

• o

C_

I
c_

el_nl

o

II

I
L_.

I

0 o o

0

I

4m_ v.i

v

I i I I I

ioo

-_"4

U

>

M. Deulsch

Hughes
36 of-38

_3

02

M. Deutsch

Hughu
37 of 38

r_

0
C

Jm

0
0

C

c_

iim

O_
L.C

_0

0
m

L_
O0

m

|
|

c_
(D

X

iim

L
m

C C
0

m

oE

gm

• -, 0
0 L

0

L_
0
L

0
n- E

0

L.

0
m

c-
O

im

U
im

m

c_

t_

>
Elm

0

c_

0

13.
0

|
|

_Z
0

II_lm

_D

Elm

s._

0
0

m

m

c

>
_J

Jm

0

m

0

E
E

0

c_

0

Bm

m

0
Elm

0

n

0

C

E
s_

C
im

m

t_
c-
O

im

Z3
s_

c-
m

M. Deutsch

Hughes
38 of 38

<
r_

A Software Environment: Some Surprising Empirical Results

Bruce I. Blum

Johns Hopkins University/Applied Physics Laboratory
Laurel, MD 20707-6099

(301) 953-6235

A CONTEXT FOR THE ANALYSIS

A recent model of the software process describes it as a transformation from

some need in the application domain to an automated product that responds to that
need. 1 As shown in Figure 1, the process can be further decomposed into:

(T1) A transformation from the perceived need into a conceptual model (which
uses application domain formalisms) that describes the problem and the automated
solution.

(T2) A transformation from the conceptual model's view of the proposed solution
into a formal specification that defines the behavior and performance of the
software product.

(T3) A transformation from the formal model into an implementation.

In the traditional waterfall flow, the first two transformations are called requirements
analysis and the third encompasses the software development activities.

APPLICATION

DOMAIN

CONCEPTUAL MODELS

FORMAL MODELS IMPLEMENTATION
|| ll|= •

v

DOMAIN

Figure I. The essential software process.

B.I. Blum
APL

1 of 19

Both T1 and T2 rely on knowledge of the application domain; they depend on the
experience and judgment of the analysts. Validation increases confidence that the

right system is being specified, but there is no concept of correctness. T3, however,
begins with a formal specification, and there are objective criteria to determine if the
product is correct with respect to its specification. Product behaviors not prescribed

by the specification must be validated.

Most software problems (and associated costs) can be traced to failures in the

requirements analysis phase. In terms of the software process model just presented,
such failures result when the conceptual model is invalid or when the formal model is

an inaccurate representation of the conceptual model. This view is reflected in
Brooks' statement,

I believe the hard part of building software to be the specification, design.
and testing of this conceptual construct, not the labor of representing it
and testing the fidelity of the representationfl

(The italics are Brooks'.)

Of course, by historical necessity computer science first addressed the challenges
of establishing effective representations and determining their correctness. With this
orientation, the conceptual model was restricted by the technology's ability to realize
implemented solutions; freedom to adapt the conceptual model was constrained by the
effort to produce an implementation. Yet, today it is possible, for some well-
understood domains, to bypass the problems of representation and focus only on the
process of conceptual modeling (T1). This note examines how the software process
behaves in such a setting.

An environment that concentrates on conceptual modeling has been used in a

production setting for a decade. 3 In this environment:

The notations used for the conceptual and formal models are isomorphic. Thus,
T2 is eliminated.

Behavior-preserving methods are used to transform the formal model into an
implementation automatically. Consequently, T3 is eliminated.

The software process thus reduces to the implementation of prototypes that are
defined, tested, and ultimately put into operational use where they continue to evolve.
In Brooks' terms, the developers work only with the "conceptual construct" from
which the implementation representation can be generated.

Project data from this environment provide insight into the essence of the
software process when the labor of implementation is removed. As will be
demonstrated in the following section, some of the results are surprising.

DATA ANALYSIS

The environment under review has been used to implement clinical information

systems, itself, an AI database interface, and some smaller applications. The largest
product, the Oncology Clinical Information System (OCIS), consists of over 6,000

2

B.I. Blum

APL

2 of 19

programs and manages a database modeled with 1,700 relations; it is considered one of
the most advanced systems to support tertiary care. 4 Two other hospital-based

information systems have been implemented; one has been retired, and the second
remains in operational use. The intelligent database interface tool is in beta test but
is not used operationally. Data from these applications substantiate the following

observations.

Product growth. Each product is viewed as a collection of tools by its user
community. Consequently, when the system is found to be effective, new tasks are
identified, and the product grows. The limits to growth are the willingness of the

organization to assimilate new features, the ability of the development group to
identify and implement new features, and the limits of the computational resources on
which the application operates. In the case of OCIS, there is continuing growth that
levels off as the equipment resources are saturated. (See Table 1.) Each new
increment of computer resources is followed by an increase in system size and the
number of functions supported. Growth also can be restrained. After a decision was
made to replace the 750 program Core Record System, it grew by only 5% in a three

year period; changes were restricted to externally-mandated modifications. In all
systems studied, growth in the number of programs and number of tables (relations) in
the data model is proportional. The number of new attributes in the data model

grows more slowly because most new tables augment concepts associated with existing
attributes.

Year
measured

'i982

1983

1984

1986

1988

System size

Programs

2,177

3,662

5,024

5,5411

6,6052

Tables

456

848

1,045

1,375

1,635

Elements

1,251

2,025

2,398

2,613

2,924

Includes 399 programs not in production use.
2 includes 32 programs not in production use.

Table I Growth of OCIS at five points in its operational life.

System stability. Tables 2 and 3 illustrate the modification history of the OCIS
table and program definitions. Each table presents a matrix of year initially defined

by year last modified. The total column counts the number of objects defined in a
year; the total row counts the number of objects last modified in that year, i.e., the
object was not modified after that year. The 1988 data represent only the first 6
months of that year. The data in these tables are analyzed in the following two

paragraphs.

Although the number of programs and tables grow at about the same rate, the
definitions of the tables are more stable than those of the programs. For example,
after OCIS had been in operational use for over 5 years, a review found that 31% of

B.I. Blum
API..
3 of 19

the programs and 32% of the tables were new in the sense that they had been defined
in the last 2.5 years. Yet, an examination of changes to the previously-defined

objects showed that 34% of the programs and only 7% of the table definitions were
edited during that two-and-a-half-year period. (Reasons for the relative volatility of

programs arc discussed in Reference 5.)

Year
defined

1980

1961

1982

1983

1984
1985

1986

1987

1988

To_ls

1980 1981

2 4

95

99

Year table last updated

1982 1983

1 1

31 23

159 34
176

191 234

1984 1985

4 2

5 7

7 3

19 20

193 9
168

228 209

1986

1

11

8
13

13

15

183

244

1987 1988

1

10 3
10 8

14 1

14 7

21 5
16 15

200 20
82

285 142

Total

16

185

229

243
236

2O9

214

22O
82

1634

Table 20CIS table modifications by date defined and last change.

Year
defined

1980

1981

1982

1983

1984

1985

1986

1987

1988

Totals

i , ,,

Year program Jastupdated

1981 1982 1983 1984 1985 1986 1987 1988 Total

3

91

94

5

74

335

2

27

172

252

5

34

52

155

514

24

63

102

106

234

5

65

151

111

164

173

432

414 453 760 529 1101

90

176

162

306

169

306

499

1708

2

81

199

92

169

199

219

272

313

1546

22

486

1148

874

1259

775

957

771

313

6605

Table 30CIS program modifications by date defined and last change.

Impact of change. In a highly integrated system one would expect changes to ripple

through the system. This has been demonstrated with a small conference management

example, e In the case of OCIS, 1,084 programs were added to the system over an 18-

month period to bring its size to 6,605 programs. During this process, 2,170

previously-defined programs were edited. In other words, to increase the size of the

system by 20%, some 40% of the existing programs had to be modified. While the
magnitude of this change may suggest a poor design, it should be noted that the

system is used to support decision making in life-threatening situations and is

4

B.I. Blum
APL
4o[19

perceived to be free of errors. These modifications were made by a staff of 4.5 full
time equivalents; many persons edited objects that they did not design.

Edits as a measure of understanding. If the software process relies on iterative

problem solving, then it must involve testing potential solutions and replacing existing
solutions as the problem is better understood. In this context, edits can be
considered a measure of the analysts' ability to translate an idea into a valid object
in the conceptual model and then evolve that object as experience accumulates.
Several studies have shown that for small applications of under 100 programs an
average of only 2-3 edits is required before a program is accepted as valid.
(Naturally, with iterative development the needs will change, and additional edits will
be required for evolution.) An 8-year edit history analysis of the 6,000 OCIS
programs showed that the median number of edits for a program was 10. These edits
include changes for debugging, pre-operational testing and post-operational evolution.
Only 10% of the programs had been edited more than 33 times. The generation data
are presented in Table 4; it is assumed that the number of edits is one less than the
number of generations (compilations). Notice how stable the data are over the three
periods sampled.

Number of program generations
Percentile

1984 study 1986 study 1988 study

10

20

30

40

5O

60

70

80

90

99

3

5

7

9

11

14

17

22

31

3

5

7

9

11

14

17

23

31

3

5

7

8

11

14

18

23

34

10867 82

Program 4,919 5,541 6,605
count

Table 40CIS program generations for three studies.

Individual differences. There is a large body of literature suggesting that individual
differences vary by as much as an order of magnitude. Although there are obvious
differences among the individuals assigned to the projects examined, the range for
each measure of individual performance was within 50% of the group mean. This
relationship was not valid during the training period, which sometimes extended two
or more years. Experience with these projects suggests that most individual
differences are a training artifact rather that an inherent characteristic of the
workforce. Moreover, individual effectiveness in this environment seems to correlate
best with domain understanding.

B.I. Blum
APL
$of 19

Year defined
Designer

1980 1981 1982 1983 1984 1985 1986 1987 1988

5 176"B1

82

83

B4

85

B6

B7

01

02

O3

O4

05

O6

07

O8

Other

Man Yrs.

3

13

33

92

50

32

32

19

2

13

24

13

7.0

182

46

15

232

84

24

208

20

214

63

1

33

26

7.0

7

15

105

40

252

25

304

71

47

5

3

5.5

41

47

224

42

406

307

155

3

34

4.5

1

162

13

207

253

139

4.5

232

14

362

249

95

5

4.5

184

30

256

230

67

4

4.5

33

3

81

176

14

6

2.3

Table 50CIS programs by dedigner and date of definition.

Year defined
Designer

1980 1981 1982 1983 1984 1985 1986 1987 1988

B1

B2

B3

B4

B5

B6

B7

01

O2

03

O4

05

O6

07

O8

Other

Table 6

24.8

13.0

21.6

8.0

22.6

27.0

27.5

27.7

23.3

17.9

13.7

17.5

33.0

34.2

22.1

12.6

15.4

25.2

19.0

16.5

15.6

23.7

13.3

18.9

18.9

16.0

12.6

18.3

3.6

9.9

17.5

10.4

15.3

11.7

12.8

14.0

21.6

27.2

4.7

15.8

16.6

15.2

12.5

15.5

17.1

18.0

12.0

40.4

14.0

13.2

10.7

20.7

15.9

12.3

10.7

5.6

10.7

15.4

9.5

5.6

9.5

3.2

7.8

17.2

5.9

12.5

9.2

4.3

8.4

13.6

7.8

25.8

Average OCIS program generations by designer and year of definition.

6

B.I.Blum
APL
6 of19

Tables 5 and 6 report annual OCIS designer activity in terms of the number of
programs defined and the average number of times those programs were generated.
The data are recorded for programs that were part of the production system in 1988,
and there is no recording of the effort related to discarded programs. Designers from
the Department of Biomedical Engineering (BI-B7) were professional software
engineers, ,and they left the project after the system was installed. Of the Oncology
Center staff, only 02 and 03 had formal training in software engineering or computer
science; 03 is responsible f6r system management and does very little application
programming. Both 04 and 05 were hired with no prior computer experience. Note
the relatively high program generation rates in the first year of training; after three
years on the job, however, it is difficult to identify which designers are the most
experienced. (The differences in the number of programs designed by 04 and 05 in
1981-1983 relate to the fact that many of O4's initial assignments could be
accomplished by copying and then editing a existing report or search program. Thus,
even with a simple table like this, some domain understanding is necessary for its
interpretation.)

Productivity measures. Because the environment employs a paradigm for software
development and evolution limited to conceptual modeling, it is impossible to compare
its productivity with paradigms that emphasize the detailing of the formal model to
produce an implementation (i.e., those that focus on T3). By way of a characterizing
metric, OCIS productivity over an 8-year period was .74 production programs per
effort day. (See Table 5; there are approximately 225 workdays in a year.) For the
prototype database interface application, the rate was 1.8 programs per effort day.
These numbers do not account for discarded or retired programs. The functionality of
a program is approximately the same as that of a 300-line COBOL program, but the

average program length is only 15 lines. Studies of programmers in other
environments suggests that a productivity rate of 15 lines per effort day is a
reasonable target, so a rate of a program a day for these compact specifications
should not be considered remarkable.

IMPLICATIONS

The data presented imply that the software process behaves quite differently
when it is restricted to conceptual modeling (T1) without regard for program
construction (T3). What has been described in this paper is the essence of building,
adapting and enhancing a software product to meet a set of human needs. Today, in

most application classes, we have not formalized our knowledge so that we can reuse
it automatically. Thus, most of the process is concerned with what is called here the

formal modeling. Because this is difficult (except where we have found ways to reuse
our experience), this type of modeling activity drives the process, and conceptual
modeling is restricted to expressions in the formal modeling representation scheme. I
believe this distorts the software process and restricts our projects. As I have

attempted to show in this paper, once the limitations of T3 are mitigated, we can
recognize how dynamic and integrated our systems are. Moreover, we also can
observe how effective people are at solving problems when they have access to the
appropriate tools and feedback.

Of course, this does not mean that formal modeling is not important. The
conceptual model referenced in this paper is a formal model. Indeed, without

B.I. Blum

APL
7 of 19

i .

_!

confidence in its formality, we would be hesitant to use the programs generated from
its specifications. We label this model conceptual because it also offers a compact
and expressive means for the designer to state and evaluate his or her intended goals.
Naturally, the representations used by a conceptual model will be application-class
specific. That is, one might expect different formalisms for interactive information
systems, satellite control systems, and programming language compilers. Thus, the
demonstration of a conceptual formalism in one domain may have little bearing on the

utility of that formalism in some other domain. The important point, however, is that
where such conceptual formalisms can be constructed, they will allow us to focus our
effort on the problem we intend to solve rather than the implementation of its
solution. 7 That should lead to improved productivity, reductions in apparent individual

differences, the management of complexity levels otherwise considered dangerous, and
(one would hope) revisions to some of the software process assumptions that we
accumulated as a result of our concern for writing programs.

REFERENCES

B. I. Blum, Formalism and Prototyping in the Software Process, Information and
Decision Technologies, (in press).

2. F.P. Brooks, Jr., No Silver Bullet, Computer, (20,4):10-19, 1987, p. 11.

3. B.I. Blum, TEDIUM and the Software Process, MIT Press, Cambridge, MA, 1989.

.

.

J. P. Enterline, R. E. Lenhard and B. I. Blum (eds), A Clinical Information System

for Oncoiogy, Springer-Verlag, New York, 1989.

B. I. Blum, Improving Software Maintenance by Learning from the Past: A Case

Study, Proceedings of the IEEE, 77:506-606, 1989.

.

7.

B. I. Blum, Iterative Development of Information Systems: A Case Study,
Software-Practice & Experience 6:503-515, 1986.

B. I. Blum, Volume, Distance and Productivity, Journal of Systems and Software,
10:217-226, 1989.

ACKNOWLEDGMENT

This work was supported in part by the U. S. Navy, Space and Naval W_irfare

Systems Command (SPAWAR) under contract N00039-89-C-5301, task VMAR7 with the
Office of Naval Research (ONR), and by the Air Force Office of Scientific Research

(AFOSR) under grant AFOSR-89-0080.

B.I. Blum

APL

8 of 19

VIEWGRAPH MATERIALS

FOR THE

B. I. BLUM PRESENTATION

5794

rr"(D
m

Will

L_

lira

0 "-

COCO

< CD

0
CO

!.--

0

I,--

0
.Q

r_
0

iim

>,,

Q.

"0

iIm

Q.
<

E
m

m

0

IL__

IIm

'- E
Q'E

c_ 0"}
_o

,4-- Q.
0
r./)

_.-
_.,-,
c-

O _.__

c-

m

_E
_ 0

C
"_o

0 _
E'"

"_E

0 •
0 c-

"_ _ _
0

_ k

L

c-
i--

r./)
m

r_
(D

t-'
I-.

B.I. Blare
APL

g of lg

I

O
co
C_

L
OE

>,,

O
O"--

III

Ill

lu

OE
III "--

E
E1
O

O

r,D r.- O

E _ O

E <'- OE

o o

oom_ "_E
"-_-- "O O o30

., 0 "-- -- Z"O
¢n o o
-_ >,_0 _ -i..., "0

ooo N-o L
O'E O c- 1.1.1-,.-, E
o O O < k.. c: 03
l[""

I-"

t- 131
(i.) t-

CO
E
0

"0
E

t._ 1,0--

0

• 0
0}"0

t._

•..0 0 00
E 0 0

co 0

_oE o
O

o < o. oO

_0
0
L_

O.

m

m

m

B.I. Blura
APL
10 of lg

O

(.9

CO

O
I,.__

<C

W
fr
C)
O

u

o_

cO,_.¢_ ¢e)_=" Q t_ b,.

W

b=

o_

N

ft..

_ _=,= _=- _=_

e=

E
E

ILl

cD
i

t_

W

t_ t_ CO

CXl O4 O4

W=_

W==. _==, W=--

r---
co
o')
W===

t_
I

t_3

CZ

C)
c=
c_

<I)
.4=='

(I)
L_

i ___

E

0
0

E

B.I.Blum
AFL
11o[19

_0 CO

B.I. Blum
APL
12 of 19

F--

(I)

CO
:>_

00

cO

O
O

_o

(1) e-__

O c-
O

O
m

e'_ ¢z
E E_

---- CO

m

I

I

O0 _OCq _-- ,--

O.
-a

o

E

o
a.

t,.. o o
v_ v.-

v.-

v_

_- _o _o

co o_ oo

v.- v.-

,.. ¢_ ,.. co

B.I. Blum
APL
13 of 19

_6
cO
O_
y.--

't'-'

tO
I

CO
0

0

0
t_

0

0

b..

B.I. Blum

APL
14 of 1_)

oO co
(D _

O_
(D _-

0

B.I. Blare

APL

15 of 19

B.I.Blum
APL
16of 19

c/'J
m

c_
=o

"0
um

Ill

gO
m

m

CO _ t/_ I'_ 0'_ _'_ I_ I/_ 0 ¢_1 ,,--i

C)
cO

B.I. Blum

APL

17 of 19

B.I. Blum
APL
18 of 19

0

0
0

B.I. Blum

APL

19 of 19

Measurement Based Improvement of

Maintenance in the SEL

H. Dieter Rombach

Bradford T. Ulery

Computer Science Department
University of Maryland

:Ion Valett

NASA/GSFC

14th Annual Software Engineering Workshop

NASA/GSFC, Greenbelt, MD
November 29, 1989

1. INTRODUCTION

The SEL was created in 1977 for the purpose of investigating the effectiveness of various software

engineering technologies. A large number of case studies and controlled experiments have been conducted

in the past that have resulted in evolutionary changes to NASA's software development practices [e.g,

Basili85,McGarry85]. In this study, we have extended the traditional scope of the SEL to include

software maintenance in order to gain a more complete understanding of the software lifecycle. This

study began in early 1988.

This report describes some initial results of this study. The first part of the. report describes the

design of the study, including the goals, some background about the environment in which we are work-

ing, the improvement approach, and measurement procedures. The second part reports some of our

empirical observations.

2. MAINTENANCE STUDY DESIGN

2.1. Goals of Study

The quality of the delivered product influences both what changes will be performed and the

amount of effort that will be required. We therefore characterize the products with the following objec-

tives in mind: to understand how and why the product changes; to understand how the product influences

productivity during a change; and to provide historical, baseline data for future projects.

We characterize the maintenance process to understand how maintainers spend their time and what

they do. We study the entire software life-cycle to understand how the maintenance process compares to

development; to understand how specifi.cation developers, software developers, users, and maintainers

communicate; why changes are made; and whether the organizational divisions result in the best use of

personnel's skills and knowledge.

H.D. Rombach
Univ.ofMD
1of21

Maintenance is compared to development in order to

(1) understand the extent to which lessons learned during development can be applied to maintenance;

(2) evaluate hypotheses concerning the information loss arising from transferring a system across organ-
izational units;

(3) evaluate the quality of the system as measured by its actual use and history of changes once

development is complete.

In order to make improvements, the findings must be packaged for use by future projects. Descrip-

tive models and baselines permit a project leader to assess a project's progress relative to past projects.

Guidelines need not represent significant advances, but can serve to. make projects more consistent and

predictable.

2.2. Background

The focus of this study is the early maintenance phase which begins upon acceptance of the

developed system and lasts until launch. During this phase, users train for launch operations and exercise

the system on test scenarios.

The organizational unit responsible for maintenance consists primarily of the engineers and scien-
tists who write the functional specifications for the software. These same people are also responsible for

training postlannch operations personnel in the use of the system. Each change, whether it is a small

correction or a major functional enhancement to the system, is performed by a singl e person. The tech-
nology employed depends on the individual, but many of the familiar techniques from development are

absent (e.g., formal PDL, code reading, unit test drivers).

To date, we have monitored six projects including each of the three major types of systems

developed in the SEL environment:

(1) Attitude Ground Support Systems (AGSS) provide operational support for a mission. Their func-

tions include determining spacecraft attitude from telemetry data, verifying the on-board

computer's attitude determination and control, supporting star tracking (for guidance), and more.

(2) Attitude Telemetry Data Simulator Systems produce realistic attitude telemetry and engineering

data files to exercise the algorithms and processing capabilities of AGSS's. Telemetry data includes

essentially everything the spacecraft knows and could report back.

(3) Attitude Dynamics Simulator Systems are analytic tools for testing and evaluating (two subsystems

of) the spacecraft simulators. They simulate the environment of the spacecraft, sensor data, the

on-board computer's response (actuator commands), and the resulting control torques in order to

model the spacecraft dynamics.

All of the systems studied so far are written in FORTRAN (the first Ada systems are just now

approaching maintenance). The systems we have studied range from 37K to 235K lines of source code

(including comments and blank lines) and require from 3 to 28 staff-years to develop. The AGSS's are

the larger systems, the simulators the smaller ones.

During maintenance, each change is formally defined by an Operational Software Modification

Report (OSMR), a form that specifies the change, and then follows it, gathering dates and signatures as

the change is approved, implemented, tested, installed, etc. Typically there are more outstanding OSMP_

than resources. A Project Task Leader is responsible for allocating these resources, :

OSMRs may be filed for several reasons. Acceptance testing may reveal the need for enhancements

(corrections are still the responsibility of the software developers). Later, the users may request

H.D. Rombach
Univ. of MD
2 of 21

enhancements or identify the need for corrections or adaptations. The specification developers may also

initiate changes, resulting from ideas about similar forthcoming systems. Or, the project office may
modify the project requirements.

2.3. Maintenance Improvement Approach

The procedures of this study were based on the improvement paradigm (chart 4)

[Basili88,Rombach88]. This paradigm suggests that maintenance can be improved by iterating the fol-

lowing steps for each project: (1) characterize the corporate maintenance environment; (2) state improve-

ment goals in quantitative terms; (3) plan the appropriate maintenance and measurement procedures for

the project at hand; (4) perform maintenance, measure, analyze and provide feedback; and (5) perform
post mortem analysis and provide recommendations for future projects.

We apply the principles of the paradigms strictly. However, during the initial phase, our under-

standing of the environment, goals, and measurement procedures did not develop according to the logical

ordering of the steps of the improvement paradigm [Rombach89,Rombach87]. Nor were all supporting

metrics identified by a strictly top-down application of the GQM paradigm. There are two good reasons

for not following these steps: (i) we sometimes discover that our knowledge of prior steps is inadequate,

so we retrace our steps, or (ii) practical constraints (such as existing data collection forms) preclude a
strictly top-down derivation of procedures.

Measurement procedures were validated by actually applying them to real projects on a trial basis.

This trial period was an important first step in establishing the measurement program for maintenance.

It gave us the opportunity to understand the environment, and demonstrate the feasibility of the planned
measurement procedures.

2.4. Data Collection and Validation Procedures

We routinely monitor the effort associated with various maintenance activities, and other charac-

teristics of the changes. Similar data is available from development. This data is used to characterize the

maintenance process, the types of changes made to the product, and the reasons for making the changes
[Basili84].

Routine data collection is implemented primarily through the use of forms (chart 5). At the end of

each week, project personnel each complete a Weekly Maintenance Effort Form (chart 6) which briefly

summarizes how they spent their time according to type of changes (correction, enhancement, adaptation,

or other) and maintenance activity (isolation, implementation, unit test, integration test, other). Upon

completion of each change, a Maintenance Change Report Form (chart 7) is filed. This form summarizes

the change from a user's perspective (reason for change and functionality) and from the programmer's

perspective (effort spent, parts of the system modified, etc.). A history of development (phase dates,
effort) and product characteristics (size, number of subsystems, etc.) is available from the SEL database.

3. INITIAL STUDY RESULTS

This initial study of software maintenance within the SEL environment has concentrated on three

major areas: 1) developing baselines of the software maintenance process, 2) comparing these baselines to

the corresponding development baselines within the SEL, and 3) beginning to understand the problems

encountered by maintenance personnel in order to provide feedback to the software developers. The fol-
lowing sections provide results and insights in each of these three areas.

H.D. Rombach
Univ. of MD
:3 of 21

3.1. Developing Maintenanee Baselines

When attempting to measure and evaluate any software process, the SEL first attempts to establish

a baseline to characterize that process. Since data collection and experimentation on the maintenance

process are at an early stage in the improvement paradigm, this step is critical to the initial understand-

ing of the maintenance process.

One way to characterize maintenance is to understand the types of maintenance requests that are

being made in this environment. Maintenance requests can be broken into three categories:

Adaptations - Changing the software to conform to a new environment feature. Such items as

changes due to new compilers or new operating systems fit into this category.

Enhancements - Changing the software to improve or increase its functionality.

Corrections - Changing the software to fix an error.

This data can be viewed from two perspectives, the number of changes completed and the amount of

effort to perform the changes (chart 8). Determining these baselines allows for a better overall under-
standing of the maintenance process. These numbers do not indicate any concept of quality, they only

provide a model for how this environment does its maintenance. Note that 14_0 of the effort during

maintenance is spent performing tasks which could not be attributed to any individual change. These

activities include attending meetings, management, configuration control, etc.

Interpreting this data is somewhat dangerous since its real goal is to simply define the types of

maintenance requests made in this environment, however, some simple conclusions can be drawn from

these baselines. Obviously, in terms of numbers the majority of maintenance changes made are error

corrections, however, an overwhelming majority of the effort is spent in making enhancements to the

software. This is not particularly surprising, since the enhancements might involve substantial changes to
the software. One point that the data supports is that in this environment many of the maintenance

requests concentrate on improving or upgrading the usability of the system. This is reflected in the

amount of effort spent in making enhancements to the software. Again, this data provides a baseline of

the types of maintenance requests and the effort spent in this environment. In the future this can be used

as a point of comparison for new maintenance efforts.

Another characterizing model is one for predicting the cost of software maintenance. An important

management tool would be the ability to determine the cost of any upcoming maintenance effort. Early

research into this area has provided no insight into the "best" way to predict maintenance effort. Chart

9 shows five different models for predicting maintenance cost. For each model the a range is shown of the

projects that were used in this analysis. For example, the effort per maifltained million lines of code

varies from 1.5 to 24 staff years, while the effort per thousands of changed lines of code varies from 0.21

to 1.25 staff years. No apparent consistent method for predicting maintenance effort can be found at this

time. Given the wide disparity of the ranges, more data collection is necessary to find a strong correla-

tion between maintenance effort and development effort or system size.

A final model of the maintenance environment that was included in this study was the change his-

tory of the product during the maintenance phase. Again, the idea is to understand how this particular

environment does business, not to make value judgments. In chart 10, data on how code evolves during

maintenance is presented. For each of the types of maintenance changes a bar graph showing the number

of lines of code and one showing the number of components, added, changed, and deleted are shown.

Regardless of the maintenance type, no or very few components are actually added to the system. This

implies that the maintainers do not radically alter the system's architecture to make changes. While

significant numbers of statements are added or changed during maintenance the changes do not generally

involve adding components. While numerous hypotheses might be given for this lack of architecture

changes, no definite interpretation currently exists.

H.D. Rombach
Univ. of MD
4 of 21

3.2. Comparisons to the Development Environment

This study utilized the past, extensive history of the SEL software development environment as a

baseline for comparison to the same organization's maintenance environment. This comparison was per-

formed to provide insight into the similarities and differences of development and maintenance and to

provide insight into how the development process affects the maintenance process. (The data used in this

study to characterize the development environment consists only of those projects that were used in the

maintenance study. Therefore, these results may vary slightly with those characterizing the overall

development environment of the SEL.)

One area of interest in this study, was to determine the amount of effort required to isolate and

repair errors in the software system. Chart 11 shows the data for isolating and completing error correc-
tibns in both the development and maintenance phases. In each table the horizontal axis represents com-

pletion effort broken down by amount of time to complete the correction, and the vertical axis represents
the isolation effort by the percentage of individual changes that fall into that category. Thus, in the

maintenance phase, 10% of the errors took between one hour and one day to isolate, and took longer than

one day to implement or repair. One, not surprising, conclusion that can be reached from this data is

that error corrections are more expensive in the maintenance phase than during development. This data

simply lends support to the claim that errors introduced-during design but discovered during maintenance

may cost 100 times more than than if discovered and repaired during design [BoehmS1]. On the other
hand, another result that this data seems to suggest which is counterintuitive is that the effort to com-

plete the corrections seems to be increasing more than the effort to isolate. Certainly, one would expect

that the most difficult part of maintenance error corrections would be the isolation of the error, when in

fact this data suggests that the difficulty is increased more in the actual implementation of the correction.
The reasons for this trend are not clear at this time.

Another comparison which was made was to look at the types of faultsthat are uncovered in the

maintenance and development phases. By performing this comparison, insightcan be gained into the

kinds of faultsleftin a system afteracceptance testing,perhaps suggestingareas for improving software

testingtechniques. Chart 12 shows the percentages of faultsin each of six categoriesfor both develop-

ment and maintenance. This fault data is collectedin a similar manner in both the maintenance and

development environment. Note that the table also shows the percentage of faulttypes uncovered only

during acceptance testing. This was included in the study because of the possibilitythat the faulttypes

changed significantlylatein the lifecycleand the faultsuncovered during acceptance testingwould there-

fore be similarto those uncovered during maintenance. The data impliesthat there are no significant

differencesin the types of faultsuncovered during development and those uncovered during maintenance.

This shows that the latentfaultsfound in the maintenance phase are very similarto those found in the

development phase. Unfortunately, thisprovides very littleinsightinto ways of improving the testingor

overalldevelopment process to prevent certaintypes of errorsfrom occurring. These data only suggest

that the types of errorsuncovered in thisenvironment are constant over the entirelifecycle.

3.3. Developing for Software Maintenance

A final area of this study was to attempt to characterize software product problems encountered by
maintenance personnel in order to provide feedback to software developers. To date, the data for this

portion of the study has come from interviews with maintenance personnel. The early, and not surprising

conclusion that can be drawn from these interviews is that the software product is not tailored to

maintainer's needs (chart 13). Certainly, the suggestions of the maintenance personnel for improving the

software product should be examined for future inclusion in standards and guidelines for the software

development process. The primary problems maintainers are experiencing involve the actual software
product.

For example, a major complaint of most maintenance personnel is that Program Design Language

(PDL) is redundant and usually outdated. In the SEL environment, developers are required to keep their

design PDL as part of the software module. Unfortunately, this PDL is frequently obsolete by the time

H.D. Rombach
Univ. of MD
5 o[21

the modulereachesthemaintenance phase, thus, it is useless to the maintainers. Also, the majority of

the people maintaining the software suggested that this practice be stopped entirely, since the same level

of abstraction is provided to them in the code structure and comments.

A second problem that maintenance programmers had with the software product was that global

information was encoded redundantly For example, global information was encoded in multiple FOR-

TRAN common blocks. Software modification frequently resulted in inconsistent representations of global
information.

Finally,the maintainers suggested that the debug interfaceof the code be improved. The software

developed in thisenvironment isof a highlycomputational nature,therefore,in order to testthe software

efficientlyan extensivedebug interfaceisprovided with the systems. The problem with the currentdebug

interfaceisthat frequentlyitassumes an intimate familiaritywith the code in that the output was of the

form _variable_> _ _vaiue>. Maintenance personnelsuggestedthat in the futuredebug interfacespro-

vide a more descriptiveexplanationof the output printed.

4. FUTURE DIRECTIONS

We are only beginning to understand the SEL maintenance environment. Regular monitoring of all

SEL maintenance projects will eventually result in better, more reliable, models.

Eventually, we will define guidelines for maintenance and development. Maintenance guidelines

(e.g., baseline data, explicit maintenance process models, and quality models)will provide a better basis

for controlling ongoing maintenance projects, and planning future ones. Development guidelines will

describe how to build software with maintenance in mind in the first place. Such guidelines assume the

existence of an maintenance artifact model which captures our understanding of what information should

be passed to maintainers.

As the software,technology used in the SEL changes, our maintenance measurement approach needs

to be refocused. Currently, we are in the processof preparing for the monitoring of our firstAda pro-

ducts. We are especiallyinterestedin understanding the differencesbetween maintaining Ada versus

FORTRAN software [Katz86],and whether these differencescan be attributedto the Ada language itself

or the supporting technology (_.g.,object-orienteddesign).

As both maintainabilityand reusabilityof a product seem to be highly dependent on itsunderstan-

dabilityand modifiability,we expect to coordinatethisprojectmore with ongoing reuse-orientedresearch

projectsin the future.

Overall,thisprojectextends the use of measurement in the SEL to the entiresoftware life--cycle.It

should further improve our understanding, and the abilityto plan and controlfuture software develop-
ments in the SEL.

H.D. Rombach
Univ.ofMD
6 of21

5. REFERENCES

Basili84

Basili85

Basili88

Boehm81

Katz86

McGarry85

Rombach87

Rombaa:h88

Rombach89

V: R. Basiliand D. M. Weiss, "A Methodology for CollectingValid Software Engineering

Data," IEEE Transactions on Software Engineering SE-IO(6), pp.728-738 (November
1984).

V. R: Basili, "Can We Measure Software Technology: Lessons Learned from Eight Years

of Trying," Proceedings Tenth Annual Software Engineering Workshop, NASA Goddard
Space Flight Center (December 1985).

V. R. Basili and H. D. Rombach, "The TAME Project: Towards Improvement-Oriented

Software Environments," IEEE Transactions on Software Engineering SE-14(6),
pp.758-773 (June 1988).

B. Boehm, Software Engineering Economies, Prentice-Hall, Englewood Cliffs, New Jersey
(1981).

E. E. Katz, H. D. Rombach, and V. R. Basili, "Structure and Maintainability of Ada

Programs: Can We Measure the Differences?," Proceedings 9th Minnowbrook Workshop

on Software Performance Evaluation (August 1986).

F. E. McGarry, "Recent SEL Studies," Proceedings Tenth Annual Software Engineering

Workshop, NASA Goddard Space Flight Center (December 1985).

H. D. Rombach and V. R. Basili, "A Quantitative Assessment of Software Maintenance:

An Industrial Case Study," Proceeding8 Conference on Software Maintenance-1987,
pp.134-144 (September 21-24, 1987).

H. D. Rombach and B. T. Ulery, "Improving Software Maintenance through Measure-

ment," Technical Report CS-TR-2131, Dept. of Computer Science, University of Mary-
land, College Park, Maryland (October 1988). Published as an invited paper, IEEE
Proceedings, April 1989.

H. D. Rombach and B. T. Ulery, "Establishing a Measurement-Based Maintenance

Improvement Program: Lessons Learned in the SEL," Proceedings of the Conference on
Software Maintenance (October, 1989).

H.D. Rombach

Univ. o[MD

7 of 21

VIEWGRAPH MATERIALS

FOR THE

H. D. ROMBACH PRESENTATION

5794

Measurement Based Improvement of
Maintenance in the SEL

H. Dieter Rombach

Bradford T. Ulery

Computer Science Department

University of Maryland

Jon Valett

NASA/GSFC

14th Annual Software Engineering Workshop

NASA/GSFC, Greenbelt, MD

November 29, 1989

CHART 1 H.D. Rombach
Univ. of MD
8 of 21

GOALS OF STUDY

Characterize the maintenance process and

product.

Compare maintenance and development

characteristics.

Package findings to improve maintenance

and development

(baselines, models, guidelines).

CHART 2 H.D. Rombach

Univ. of MD
9 of 21

BACKGROUND

Process studied

O Early maintenance phase

o Beginning early 1988

Maintenance organization

0 Separate from development

o Individual process

(i.e., each change is performed by one person)

o Technology level is different from development

Systems studied

0 Six attitude software systems for satellites

o All developed according to standard SEL methodology

o FORTRAN

o Size: 37K to 235K lines of code

o Development effort: 3 to 28 staff-years

Maintenance Tasks

© 146 maintenance change requests (OSMRs)

© Request sources: maintainers, users

CHART 3 H.D. Rombach
Univ. of MD

10 of 21

IMPROVEMENT PARADIGM

Characterize the corporate maintenance

environment

State improvement goals

o State improvement goals informally

o Specify related measurement goals

Plan maintenance

o Plan appropriate maintenance process

o Plan appropriate measurement process

Perform maintenance

0

0

0

Perform maintenance process

Perform measurement process

Analyze collected data and provide immediate feedback

Perform post-mortem analysis and provide

recommendations for future projects

• Return to step I1

CHART 4 H.D. Rombach
Univ.ofMD
II of21

DATA COLLECTION

Standard SEL Data Collection

Tailored to Maintenance:

© Weekly effort data (form):

By class (adaptation, correction, enhancement)

By activity (e.g., isolation, change design, implement,

unit/system test, acceptance test)

0 Change data (form):

Class of change

Effort, by isolation g_ completion

Degree of reuse (additions, changes, deletions)

Source of problem (requirements, specification, design, code)

Baseline data (interviews):

Initial models of maintenance

Improvement goals

Maintenance problems (e.g., tools, documentation, structure)

O

CHART 5 H.D. Rombach
Univ. of MD
12 of 21

Name:

Project:

WEEKLY MAINTENANCE EFFORT FORM
_ , Friday Date:

Section A- Total Hours Spent on Maintenance _ b,,_ =1.,

Section B-Hours By Class of Maintenance _r=_=q_=ur._s,c_n, ,*mw,_,.==_=,h
s_tkxl A)

Enhancement

Adaptation

Other

-Iours spent on all maintenance associated with a system
failure.

Hours spent on all maintenance associated with modifying
the system due to a requirements change. Includes adding,
deleting, or modifying system features as a result of a
requirements change.

Hours spent on all malntenence associated with modifying a
_/stem to adapt to a change in hardware, system software, or
environmental characteristics.

Other hours spent on the project (related to maintenance) not
covered above. Includes management, meetings, etc.

Section C-Hours By Maintenance Activity (Tomofhoor._ S==k,nC.houU ,q,=,toU, hour=_
Sectk)nA)

iiiiiii,, ,ii:iii: i:
_olation

Change
Design

Implementation

Unit Test

Integration
Test

: ::_;::;:_:_:_:-:.::_:_:_:_:i:;:!:!:!:i:i:'_!:;:_;!_:'.:_!_;_ii!_2: :i:_: :_;ii::::i:i; V ° ::!::.".::::::: :i_$!:_$_:!:;:!..::!:!:!:!:!:i:i:!:i:-:i:;:i:i:i:_i_i_i;i:;;!;:i:i:_:_;:i:;_;_
.:.:..:.:..:+:.:.:..,+:+_........... ._................. :: .. ,,.,_..........,.....,,,..,...,..

Hours spent understanding the failure or request for en-
hancemant or adaptation.

Hours spent actually redesigning the system based on an

und__._.erstandingof the necessary change.

Hours spent changing the system to complete the necessary
change. This Includes changing not only the code, but the
associated documentation.

m

Hours spent testing the changed or added components.
Includes designing tests and writing test ddvers.

Hours spent testing the components Integrated into the
system. Includes hours spent on system test.

Other

Jm_

Other hours spent on the project (related to maintenance)
not covered above. Includes management, meetings, eto.

CHART 6 H.D. Rombach

Univ. of MD
13 of 21

11,=,
U_

,i IT irr

MAINTENANCE CHANGE REPORT FORM

Name: OSMR Number:

Project: Date:

SECTION A: Change Request Information

Functional Descrtption of Change:

What was the type of modification?

Correctk_t

-.-- Enhancement

Adaptat_=n

What caused the change?

Requlrements/speclflcatlons

Software deslgn

Code

Previous change
._. Other

:.:;:_:::_'._::::::::;i";:::._::_:::::::":::::_::_:::':::i:_::::::_:__:_::':'::::$:_::::::i;;_:::_i:::::::;::;::i;::::::_::::::_;:::i:::i::!:;::::i:.::::i:i::i::i:$i:__:_i:i:i:i:i:::i:i:_i:i:i:i:!:::::::::::::::::::::::::::::::::::::_:i:i:i::;:::::::::::::":_::i:i:_:_:i:i:i:i:i:.::i:i:i:!:_:i:!_:i:_:_:i_:_:i:i:;:i:_:_:i:i:_:i:i:_::':.::i:i:i:i:i:i:;:'$i:i?i:i?_?':i:i:_:i:i:':i:':i:;:i:i::::::::::::::::::::::::::_:i:i:;::;_!:_:!:i:i:_

SECTION B: Change Implementation In_ormaUon

Components Changed/Added/Deleted:

Estimate the effort spent Isoleting/detennlning the change:

Estimate the effort to design, Implement, and test the change:

Check all changed objects:

Requirements/Specifications Document

-.,..-- Design Document
.-,.,_ Code

_.... System Oucr_pUon
User's Guide
Other

lhrt_ 1 day to 1week to
<lhr I day I week I month >1 month

ffcode changed, characterize the change (check most
applicable)

___ Initialization
Logic/control structure
(e.g., changed flow of ¢ontroq

_ertace (]ntemaO
(module to module communication)

__ Wertace (extemar)
(module to external communk:atlon)
Dam (value or stn_ctum)
(e.g., var_aUleor vakJe changed)

Computatk_
(e.g., change of math expression)

Other (none of the above apply)

Estimate the number of lines of code (Including comments): m

added changed

Enter the number of components: __.__ m

added changed deletKI
Enter the number of the added components that are

tm_y new tou_ reused

m

deleted

i

reuse(] with
_k)n=

H.D. Romba¢h

Univ. of MD

14 of 21

!,..,

CH_ARACTERIZE PROCESS

QITESTION:

What types of maintenance requests are made?

OBSERVATIONS (forms)'.

Number

of Changes

Effort

INTERPRETATION:

Enhancements may be due to

Maintenance characteristics (e.g., emphasis on improving

usability)

Development characteristics (e.g., imprecise requirements)

CHART 8
H.D. Rombach
Univ. of MD

15 of 21

CHARACTERIZE COST

QUESTION:

How can the cost of maintenance be estimated?

OBSERVATIONS:

O Effort, total (staff-years): [0.07,1.7]

0 Effort per year (% of devt effort): [1%, 23%]

o Effort per maintained MLOC (staff-years): [1.5, 24]

o Effort per "modified" KLOC (staff-years): [0.21, 1.25]

0 Effort per 100 changes (staff-years): [1, 15]

INTERPRETATION

No obvious correlation between maintenance effort

and (development effort, system size)

Mainly a function of the amount of maintenance

performed

CHART 9
H.D. Rombach

Univ. of MD
16 of 21

CHARACTERIZE

CODE EVOLUTION

QUESTION:

How does the code evolve during maintenance?

• OBSERVATIONS (forms):

Adaptations:

_EL .

Corrections:

Enhancements:

LOC

_EL

Components

INTERPRETATION:

Maintainers do not change the system architecture.

CHART 10
H.D. Rombach
Univ. of MD

17 of 21

CHARACTERIZE CORRECTIONS

QUESTION:

How much effort

maintenance and

is required to

development.

make corrections during

• OBSERVATIONS (forms):

Development:

Isolation

Effort

Completion Effort

Longer< Hour < Day

<HoorI 10< Day 11 16

Longer 2 __ 3_

1
4

4

Maintenance:

< Hour 4 16

< Day 0 31
Longer 0 9

9
10
21

INTERPRETATION:

Error corrections are more expensive during

maintenance than during development.

Effort to complete corrections increases more than
effort to isolate.

CHART 11
H.D. Rombach
Univ. of MD
18 of 21

CHARACTERIZE FAULTS

QUESTION:

, Are the types of faults detected during maintenance
different than those detected during development?

OBSERVATIONS (forms):

Types of faults:

mmm

Structure Devt

Computation 14°-/o
Data Value 25%

Initialization 16%

m m m mm _m m m mmm m mm mm

Acc Test Maint

20% 11%

26% 28%

16% 25%
Ext. Interface

Int. Interface

Logic, Control
Other

8% 7% 8%
19% 12% 15%

18% 18% 13%
- - 2%

INTERPRETATION:

The same types of faults are found in maintenance

and development.

CHART 12

H.D. Rombach
Univ. of MD

19 of 21

CHARACTERIZE

PRODUCT PROBLEMS

QUESTION:

What product characteristics create maintenance

problems?

OBSERVATIONS (interviews):

0 Outdated PDL frustrates maintainers.

o PDL is redundant; it provides the same level of

abstraction as code structure and comments.

0 Global information encoded redundantly.

o Debug interface assumes intimate familiarity with code.

(< variable > -- < value >)

INTERPRETATION:

The product is not tailored to maintenance needs.

CHART 13
H.D. Rombach
Univ. of MD
20 of 21

FUTURE DIRECTIONS

@ Continue to build maintenance models g_

baselines.

Provide guidelines for maintenance.

Baseline data

Maintenance process model

Quality models (e.g., for resource estimation)

Provide guidelines to development.

Maintenance product model

Development process model to support maintenance

Expand to monitoring the maintenance of

Ada systems.

Model Ada products and process.

Compare to FORTRAN observations.

Assess implications of OOD & Ada on maintenance.

Learn from this study for reuse of experience

in general.

CHART14
H.D. Rombach
Univ. of MD
21 of 21

SESSION 3 -- SOFTWARE REUSE

M. Lehman, Imperial College

J. C. Knight, University of Virginia

C. Braun, Contel

K. Thackrey, Planning Analysis Corporation

51_11

Software, Systems and Application Uncertainty and its Control Through the

Engineering of Software

M MLehman

Lehman Software Technology Associates Ltd
and

Department of Computing
Imperial College of Science and Technology

London SW7 2BZ

Abstract

Computers are being applied more and more broadly to address applications in all areas of human activity, penetrating
ever deeper into the very fabric of society. As a consequence, mankind is becoming, collectively and individually, ever
more dependent on software and on the integrity of that software. In this context the term software includes both the

systems software that constitutes a fundamental part of the operational configuration and the programs that implement
each individual application. Integrity is a many faceted concept that has to do with the availability of programs
whenever they ace needed and their correcmess in relation to the circumstances at the moment of execution or, more
precisely, when the results of computation are applied. A program must produce a solution that is correct and relevant
when used. It must continue to do so whenever required over the lifetime of an application and of the systems that
realise and support it. All this despite continuing change in a dynamic world.

This paper opens with a brief discussion of the fundamental concepts of software engineering. The discussion leads to
the formulation of a Principle of Uncertainty that applies, in general, to all computer application in the real world. The
principle follows because any program is a model, albeit many times removed by abstraction and reification from the
real world it reflects and addresses. The consequences of this basic fact leads to recognition of a need for a disciplined
technology associated with a conllolled process for definition of each application, its operational domain and the
envisaged system with its software; and for their development, application and evolution (maintenance).

The paper continues with a brief analysis of the control of uncextainty through the application of software engineering
technology. This is seen as the discipline that permits one to limit uncertainty and its consequences through the
introduction and control of appropriate development processes and the systematic and disciplined application of
methods and tools. Finally the paper places the views presented into the context of other observations about the state of
the art in software development and remarks on the relevance of the issues raised to society as a whole.

Keywords

Software dependency; evolution; correctness; user satisfaction; uncertainty, discipline; control of assumptions; software
engineering, methods, tools

mm1453[papers]

17 November 1989

M. Lehman

Imperial College

1 of 28

-1-

1 Fundamental Concepts of Software Engineering

The need for a software engi_ discipline was first disc_ at the international Gannisch Conferegge in 1968
['NAU69]. Since then many opporu_ties for progress have been conceived, investigated and, where appropriate,
developed and introduced into practice. In general, such work: addressed specific problems. The ferst major advance in
program develolnmmt was the introduction of, so called, high level programming languages (as distinct from machine
languages) for program creation. This had, in fact, preceded the concept of a software engineering discipline by more
than a decade. _gly such lanpages reflect concepts in which an application developer thinks and
himself. But indusav has been slow in al_g the okler machine odented langnages wbose direct u_ f_ _

creation makes reliable am/responsive program developmeat and adaptation so much more difficult. With the
increasing complexity of applical/om, their criticality in societal terms and, therefore, the ever growing need for

dependal_ and adaptability tramition to the use of laoguages apWopri_ to each _on m_ be _ _.

The move to high level, applicatioa oriented, languages was followed by the study of programming methodology
[GRI78], recognition of the importance of structure and the development of a variety of s_actured and other
programming methods. Application of these concepts led, in turn, to recognition of the need for specification of a
pmsram prior to its implemenlation. This eventually gave rise to pressures for wider rise in program development of

formal (mathematically defined), rather than natural, languages [IONS0; TUR87]. Use of such languages had,
heretofore, been largely restricted to the coding activity that had long been seen by many as the essence of
programm_g. It now became apparent that major benefit was to be obtained from their application in wogram

development activities that precede wdbW. problem dermitiou, requirements _ld_is and system specification for
example. It is these so called up from activities that ultimately detmnine operational characteristics. Yet they age, in
genend, cursorily treated in most software development projects. And even if undaxaken but in a natural language,
ambiguity is di/ffamlt to avoid, cons_tency _ he _ nor can comi_eteneu be systematicadly _

The concept of specifications and the development of formal languages for iwogntm development activities other than
codinghadorisinaUy emceed in academiccin:_ from_:_tion that_ _, insome sense, of a program
could and sitould be demonslrated by a wocess of proot based on rignm_ mathematical ar_ment [_IOA69] or, even

better, should be a consequence of a rigorous (mathematical) creation process [DU69]. Testing, the generally accepted
means of _g program acceptability can never demmslrate _ of a program. It can only show that an

error is present [DIJ72]. ;_ was pursuit of this goal of constructive correctness that underlay the concepts of
programming methodology, a developing discipline for p_,mmm/ng/,I _ _ma//.. .

Unf_ly, advances in programming methodology woduced only limited benefit in the industrial development and

evolution of large programming systems and of the larger systems in which embedded computers and their software
play a conlmlling role. Development of such systems has become known as programmiag.bl.tk¢.iarge. Slow progress

in improving the technology employed in these areas was, in part, due _ hesitation to impose the discipline inhe_nt in
adopting the rigorous approach to software development [JONS0b] and tO both real and imagined difficulties in so
doing. More fundamentally, however, pmgramming-in-the-laerge raised issues such as variety [BEL76], uncertainty,
complexity and continuing evolutloa [BEL76; LEHS0] that did not. in general, arise in the development of smaller
programs and had, therefore, not been so extensively considered. The concepts and methods arising from studies of
programming-in-the-small, while having an important contribution to make, did not address the major problems from
which large system development has so long suffered.

The concepts of/_u_ progrmm, of Wogram dynamics and of their evolution had, however, born around since the late

1960s [LEH69]. Studies of these phenomena [BEL71, 72; LEH85] led inevitably to the realisation that the various
stages of development over the lifetime o(a software system inleracted and influenced one another significantly. Local
optimisation, for example, often leads to penalties at later stages of development and during subsFguent usage.
Conversely, a little exlra directed investment and effoa during one activity can subsequently yield significant beaefit.
Hence there has emerged the process based aplm3ach [SPW84, 86, 87] to software development already mentioned.
This recognises that that process must be disciplined and addressed in its entirety, even if only to achieve some
appropriate balance between global and local optimisation.

Recognition of the need to define and follow a disciplined process is perhaps the most important advance in system

development of recent years. To achieve it one trLrStneeds a process model [LEHS0, 85; SPW84, 86, 87] that defines a
systematic and coherent path from formulation of an application concept via realisation of a usable system to its
subsequent evolution. Process models may be generic or specific. Whether they can reasonably be considered

algorithmic is a mau_ of some controversy [OST87; LEH87c]. Models are developed by first identi£ying technical and
management activities required, the extent of information capuue and storage, and the interfaces, relationships and

dependencies between all these. Together they wovide the structure and composition of the basic wocess. Given this,
one then selects or develops methods to execute technical development activities. The introduction of defined and
disciplined methods permits the application of computer based development tools. These provide mechanised support
for individual activities and their systematic control. If appropriately conceived, the totality of methods and tools

M. Lehman
Imperial College
2 of 28

-2-

wovides suppm for all aspects and stages of system evolution. True overall effectiveness will, however, be achieved
onlY if dam relxesentadon, methodsand tcg_ can andare itegruted to provide full mdcolerent lJfelime suppo_ And
even then, a process is only as good u is the rigom"of its applicati¢_ This is why techniques and tools to facilitate and
control planning and management of a group and its activities, the project, must be included when planning and
implementing integrated lifetime development suPlX_ Equally one requires both to support management of the
emerging software and system product during development, its subsequent release to users and its evolution. Such
product related function is exemplified by the need for management of component variants and versions, system
coafquration and fault fixing, and the control of system evolutioL

For this great variety of tools to be able to interact md to support one another, and to achieve adequate support for
application and product evolution, the collection must, as indicated above, be associated with an information
repesttery. This retains all infomatim relating to the development process, to the product woduced and to the project
that produces it for as long as it may be needed, some over the lifetime of the application. Facilities to support
communication between machines and between people, office and document prepuratloa facilities and so on are also
required. If created as a coherent and integrated set, the resultant family of tools and services is termed an Integrated
Project Support Environment (IPSE) [LEH87a, hi.

The concepts and approaches outlined above reflect enabling technologies of an emerging software engineering
discipline. Much oftbe associated technology is avaihble for transfer to industry and the commercial world. But the rate
of its penetration is too slow in reJation to that at which computer systems are being introduced. To achieve an adequate
rate of tnmsfer and applkation in relation to the spread of computexisation represents a major challenge [LEH86]. An
essential ingredient of any response is the increasing use by industry of software engineering expertise, in house or from
appropriate external services. In particular industry must lean to un&asmnd the differing roles of programmers and
software engineers [-L,EH86]. The former have responsibility for development of specific products: the latter for
defining, developing and, perhaps, managing the process and its support. The difference between these roles is
fundamental. Both must be supported if software that is to remain satisfactory over its entire lifetime is to be achieved.
The titles given to those who fulfill these tasks may not be universally agreed [BLU89]. The fact is they are different
and each is important in its own right. One must accept and willingly pay for both.

Following on the wecedmg discussion attention may be drawn to another fundamental pmporty of software.
Engineering technologies that have evolved in the past have provided development and management disciplines for
artifacts embodied in physk.al form. The inventors, architects, designers and implementors of such artifacts have been
controlled and constrained by laws of nature, by the properties of the materials processed and by the visible
_sthetics of their production. Moreover, product evolution has occurred over hundreds if not thousands of years, has
enconraged and been supported by the parallel development of mathematics a_d natural sciences, and has created the
market fow,es that have led to product application. Science, technology and application have evolved in step.

Software technology is fundamentally different in each of these changtedstics. It has evolved from primitive beginnings
in a matter of decades. Mathematics provides a theoretical basis and a framework, contributing notation, techniques and
methodology. A mole general theory for software development has, however, been .slow in developing relative to the
growth in computerpower and thespreadof computers. The demandfor $oftw_c hat OUtlaWedthe availability of an
adequatt teckm_og_ to jwoduce/t. Industrialdevelopment hasbeen driven by market demand that is often uninformed
and not discriminatmT. The most distinctive feature of software development, however, is that it consists entirely of
_xmal manipulation [LEH84b]. From first verbalisation of an application concept, whenever a system or a part of it is
developed, fixed, enhanced, adapted or extended, text is added, changed and/or eliminated to achieve the desired result.
In this Wocess no natural laws, physical constraints or maw.ml _ operate. The manipulator is free, in a sense, to
do what and as he pleases. The only constraining influences are the syntactic and semantic rules applying to the
languages in which text is exlxessed at each step, pragmatic Wocedures and constraints that are introduced, and the
enfo_,ment of all these by adequate management and comwehensive mechanisation. The end result is visible only as a
static textual model. That that model is satisfactory can be determined only by semantic interpretation or by
examination of the results of executioa. In addition, absmgt artistic or mathematical and aesthetic judgements may be
applied when text is perused. The more stringent the rules, procedures and judgements, the more do they provide an
analogue of the cemuainu existing in the physical world and tlzreby the discipline demanded by the _urrent activity
of mmy people over atl extended time. Therein lies the real significance of formality, the introduction of method and
the provt_km of suppomlg tools.

2 Uncertainty

2.1 Introduction to the Main Theme

The weceding overview of software engineering, an excerpt from a recendy published paper [LEH89], provides a
backsmumi for the main theme of dtis paper, an exa,mination of the concept of Program Correctness. This is clearly an

M. Lehman

Imperial College
3 of 28

-3-

important issuein an age when society, individually andcollectively, i_ becomingever more dependenton computers
and, therefore,on mftware. IssuessuchI the reliability of development andmaintenancetechnologies,andtherelative
reliability of decisiom by man andby machinecannotbe addreued here. In passingit should, however, be noted that
hgreasing use of metbod-bued, often formal, program specification and development [JON80, TUR87] and of
computer-based tools [STE85, LEH87a] rewesent major progress in both these areas. The question to be addressedhere
is more basic. Is there a limit to the confidence one may have in the correctness of the results of execution of programs
that solve woblems in the real world? In response to this question, three categories of ancerta/nty about the behaviour
of inch programs relative to the _ of d_r _ent _ ¢mlined. In combination d_ lead _ _ U_
Principle of Computex Application [LEH89]. A Mief discussion of the role of software engineering in minimising
uncegtmty and its significance to society at large concludes the paper.

2,2 Program Classiticadon

It has been proposed that programs may usefully be classified into three types [LEHS0, 85a].

An $-ty_ program is one for which the only criterion of acceptability is that it satisfies some pre-stated and (to be
considered) ab$ohae spcc(llcation. The specification is the sole, complete and def'mitive determinant of program
propertY. It is the only arbiter of the program being con'ect and satisfactory. The validity, relevance or a_sthetics of the
specification ate extraneous _, as are all program properties that are neither explicitly included in the specification
or (formally) inferable from it.

A P-tyl_ Wogram is one that has been created to solve some stated problem. The criterion for success is, here, that the
solution obtained on execution is correct in a sense stated in or implied by the problem statement. If properties (side
effects) not addressed in the problem statement are observed during program execution or otherwise, their implication
on the correctness or satisfactory _ of the solution may be examined. If considered necessary, the statement must
be modified and the program adapted and re-rim to obtain all acceptable solution.

An E'O_ Wogram is one developed to solve a problem or implement an application in sor_ real world domain. The
consequenc_ of execution, the infmmation conveyed to human observers, the behaviour it induces in attached or
controlled artifacts, together determine its acceptability, value and the level of satisfactioa it yields. Note that
eorrtem_ has not been included amongst the ctita_ That _ should only be used _oexpress a precise relationship
based on calculable equivalence between a wogram or other formal representation and some higher level representation
(specil'gation) [TUR87]. The notions that replace the boolean concept of correctness are essentially fuzzy but may
include quantitative as well as qualitative measures. Program acceptability depends on a subjective process of human
assessment. It tsthe detailed behaviour under ol_ratlonal comfittonsthat is of eoncerlL

The P-type program is intermediate between $ and E-types and need not be sepetately considered in the present
discussion. One may, indeed, usefully define an A-tyj_ program that is the union of P and E types. The modified
classification schema bisects the universe of programs into those for which correctness, in the sense suggested above,
is meaningful and those for which (at the whole system level) it is not.

2.3 The Process of Development

The parenthetical observation in the previous paragraph is of fundamental significance as will become clear from a
closet examination of the software development process. Note that wherever the terms process or deve/opment
process are used in this paper the reference includes both initial development and system or program evolution
(colloquially termed _na/ntena_e)

The simple sequential process model [LEHg4b] on which the IST ISTAR environment was based [LEH87a], its multi
dimensional realisation and their predecessors [ZUR67; LEH85], all represent the process as a multi-step sequence.
Each step involves base and target representations that may equally be referred to as speciflcatWn a_d
implementation. Only the fLrst step,the first recorded verbafisadonof the appfication,hasno predecessorrepresentation
or specification. That role is played by the application in its domain, its objects, attribute.s, relations, events, activities.
As mentioned above these exist, in general, in a continuous and unbounded domain and cannot be completely or
precisely represented or even known.

The model or rewesentation produced in the first step involves, therefore, either use, in part at least, of a non-formal
representation or a major act of mental abstraction. The latter cannot be permitted since it is a transient and
unobsetvable act that cannot be recorded, controlled or, in general, revisited. In the case of the former, a representation
that is in part non-formal must be lreated as ff it were in its endrety non-formai since the consequences of ambiguities,
incompatibilities and omissions that can be read into its non-f(amalised parts reflect into any formal elements of the
complete representation. Hence the development process for E-type systems b and must be rooted in a non-formal
representation and will display, at least some, of the characteristics of such systems.

M. Lehman

Imperial College
4 of 28

-4-

Towards the end of the development Im3cess one obtains the solution system. Its most critical element, the executable
cock, is totally formal otherwise it could not serve as a computer program. As such it is essentially unambiguous and
complete in relation to a given execution system (machine, periplgrah and support software) though different machines
might display different behaviour in execution. The final, operational, system is not, however and in general, entirely
formal. It will, for example, include development and user documentation much of which will have to be in natural
language. Such documentation is, in general, _ for successful usage. Its ambiguities or omissions can be a major
sour.e of misusage, _actory execution or results and so on. That is, the target system too, in its own right, must
display some characteristics of non-formal systems. Note also that unlike the initial representation, this final
representation is no exception to the rule stated above. In es_ciation with odgr material it becomes the specification of
a further step, the next step of system evolution.

The process of E-type program development may, therefore, be described as transformation of a non-formal
representationofa realworldapplicationinitsapplicationdomain toaformalrepresentationoftheprogrammatic
partofa solutionsysteminassociationwithitsnon-formalsupportsystemoperativeintherealworldsolutiondomain.
The representationevolvingduringthetransformationproce_ willbe a structurecompcisingmany elements,sub-
elementsand soon. Some of theseelementalrepresentationswillmake thetransitionfrom non-formalto formal
representation,each atan appropriatestageof theprocess.From thestepthatany element,when viewed as a
specification,isformalised,correctnessisapplicableand must become theinitialcriterionof derivedelement
acceptability,a judgementbasedon calculablecriteria.Itssemanticsintermsofthebehaviouroftheelement(in
isolation)inexecutioncanbeknown andis,innoway,uncertain.EachfcrtherstepcanproduceanS-typeelement.

That is, all systems relating to the real world are of type E but the S-type program plays a major role in the development
pmoce_. From the step in the Wocess where a reiwesentation can be expressed in formal tin'ms, that must be done
[JONS0b]. From then onwards the developer can concentrate on S-type Wograms. Programmers (in the conventional
sense) should it_er be given any program object other than an S-type to create.

The objective of the development process, however, is tOpnxlucean _ifact that servessome pmT)OSein the real world.
The_ore, after fulfilling all relevant verification obligations to demonstrate that a step has Woduced a correct target
element, validation is also required [LEH84b]. Validation examirte$ the real world impficatiom of the formal semantics,
determining the lm3pe_es of each model in _ of gopert_ not contained in or deducible from its specification. It
should assess the element from three points of view. At the level of detail reached, the semantics of the model must
satisfy the needs of the intended purpose. The model must also appear to det'me a satisfactory solution system. Wmally
it must be detetmiued that, as the spec_qcation of the next step, the representation can be expected to provide a base for
a viable continuation process. If, from one of these points of view, the validation process indicates an inadequacy of
the current representation, it generates pressure for change in that rewesentation, in its specification and, at least in
principal, also in those of earlier steps. Where that reWesentafion is formal, processing of such a change must be itself
also be fully formalised if S-type development is to be preserved.

2.4 G6dei Type Uncertainty

From the above it follows that an E type program may be describedas a model of a model • • • of a model of a
computer appfication in the real world [LEHS0]. Turski regards each pair of neighbours in this chain of models as a
theory and as a model of that theory respectively or, equally, as a specO_cation and an implementation of that
specification [TURS1]. At one extreme this view is reflected in his interpretation of the "two-legged" software-
development Woce_ model [LEH84a]. Tmski regards this as one in which a description of the real world application
and the final implementation are both models of a spoc_cation that forms the Midge between concept and realisation.
At the other exueme, the base and target representations at the cote of each step of the canonical LST software (and
systems) development process paradigm [LEH8a,b], for example, also form a theory and model pair.

It follows that every E-type program is GOdei incomplete [C_D31], an instance of Bondi's more general observation
[BON77]. The properties of such programs cannot be completely known from within the system. Now those involved in
system development and usage become an integral part of the system. Their mental activities direct and drive the
process of system development and evolution. The degree of satisfaction that the operational system yields is
ultimately determined by the action and inaction of desiguets and users. Thus neither developers nor user can fully
know system _ _ incompleteness is transformed into GOdel-type uncertainty [LEH89]. The wocess must
seek to limit this uncertainty to repmsentaUonal incompleteness.

2.5 Heisenberg Type Uncertainty

A second form of uncertainty arises from system development and operation. As a consequence of the execution of the
development process, understanding of the application changes. User ambidons are stimulated. Alternative methods of
soludon are recognised. Apparent opportunities for.imwovement abound. Moreover, the system must evolve. Anyone
using computers seriously will have experienced the continuing maintenance that the associated software appears to

M. Lehman
Imperial College
5 of 28

-5-

require.Thisisnotentixelyduetoshortsightednesson the pm of either nsers or developers. All artificial systems must
evolve [SIM69] if they are to remain satisfactmy; but the rate of computer system evolution needs to be substantially
gnutter [LEtt85]. One somce of the continuing pressure for change in £-type sysw.ms is thut ench syucm inc!_ an
implicit model of itself. Mmeover, the application, its domain and human perception of both change. It is the associated
feedback that drives system evolution. Software adaptation is the primary means whereby such evolution is achieved.

Intrinsic delay between recognitim and implementation of a need or opportunity for change means that mismatch
between human desires and s/stem pmpertim cannot be permanently _ Satisfaction with the system declines
unless the software (which largely determines system _) is repeatedly updated (furst law of program evolution
[LEH'74. 85]). Morawer, m the system evolves, clump implementmion requires comfy increasing relative
effort (second law of program evolution [LEH74, 85]). Thus the more precise knowledge is of me appfication, its
solution and their respective domains, the less is itpms!'ble to maintain_'_ satisf_a_3ry system behaviour and satisfactory
de/ivcs_l results. The somcc of dissmid_fion is a function of _ and understanding, and cannot be completely
predicted. Hence the system displays Helsemberg-type uncertainty [LEH77]. Here too, the process and its
management is key to minimisation of the consequences of this inherent uncenaimy.

2.6 Pragmatic Uncertainty

There is also a third type of uncertainty [LEH89]. The domain of an E-type application is, in general, unbounded,
effectively continuous and dynamic, always changing. The solutionsystem is f'mite, discrete and, in the absence of
hunum intervention, static. The process of deriving one from the other involves a variety of assumptions about the
application, its domain, perceived needs and opportunities, human responses to real world events, computational
algorithms, theories about all these and so on. Some assumptions will be explicitly stated, others will be implicit in the
design and implementation detaiL All will be built into the final system.

In a dynamic world the facts on which any assumption set is based will be modified by system-exognnous events.
However carefully the validity of assumptions is conlmUed when adopted, some will be less than fully valid when the
results of execution are used. But this is when, to be fully satisfactoW, a program needs to be correct. Correctness of a
program specification and its derivati m is a means to that end, necessarybut_ sufficient. The assumption set must be
maintained correct by appropriate changes to program or documentation texts in a time frame determined by the
application and the nature of the required change. This is impossible even if all assumptions were explicit and their
location precisely known. Pragmatic uncertainty in computer system behaviour is inevitable. It is intrinsic to
mechanised computation and is intimately linked to Heisenberg-type _ty.

2,7 An Uncertainty Principle

This analysis leads to amUncm_nty Principle for Computer Appficafion:

The outcome, m the real world, of software system opermion is inherently uncertain with the precise area of
uncertainty also not knowab/e [LEH89].

G6del-type uncertainty is, primarily, a matter of formalism, of theoretical interest but unlikely to have significant
practical implications. The consequences of the Heisenberg-type is the never ending maintenance burden that
accompanies all serious computer usage. Pragmatic uncertainty is the most challenging. It leads to concerns that must
increase as computer based systems _larger, m_ con_plex and more in_mateiy inwoven with the We and
activity of individuals and of society at large. It is this which is of most concern to the Wesent workshop. Research and
development in programming methodology and software technology is providing methods and toolsto ensure that
programs can be satisfactorily developed and maintained. This work must continue and pn3cessm that exploit the results
introduced into general industrial practice.

3 Control of Uncertainty Through the Engineering of Software

The principlejuststatedleadstoimmediate,practicalconclusions.The jointresponsibilityofuser,softwareengineer
andprogrammer(intheverywideroleasoutlinedattheendofsectionI toincludethosewho, forexample,undertake
activitiesoftendescribedassystemsanalysis,design,codingintegrationandsoon)istoreduce,ultimatelytominimise,
theencounterwithuncertaintyortheconsequencesofuncertainty.

The user is wimanly _ible for defining the application and the application domain. In doing this he must seekto
ensure completeness of his discussion and analysis including consideration of the likely impact of system installation
and opmuim. Such prediction is no mean ruskespecially in view of the close and intimate coupling between the system
and its use_, individually and collectively. The likely average reaction of those interacting with the system in usage is
perhaps predictable. The specific reactions of individuals to particular situations is not; yet it may have dramatic

M. behman

Imperial College
6 of 28

-6-

consequences. Equally the uae_must consider the tuma_ and likelihond of changn in the the operatimal mvironment or
in the goals of the application, the possible consequenc_ if incompatibilities arise between the system and the
application domain u it is at the time of execution. The user is the ultimate arbiter for the validity of assumptions
embedded in the system and must accept respm_ibility f_ the consequence of decisions which ultimately become no
longer valid.

Progmmmen have involvementinandrespon_hility for all stag_ of definition, design and implementation of software
sysm_.s as peg the _ definition stmunaris_ above and dig_ weviously [I.EH86]. In this capacity uncertainty
has direct impikatiotu. In the f'wJtinstance, and dmmghont the development and lifetime of the system, they must
co_ider,recordmd takeaccmmt oftheuser'so_ definitionsa_lforwardl_g _fi_ _ _
we taken and auumpdons comcio_y made or implied by analysis, design and implementation activity, they must be
captured and faithfully n_gded. Above all they must accept the discipline and constraints imposed to assure not only
initial _ but to make possible the subsequent evolutionary adaptation of the system to changing circumstances.

One facet of the role of the softwa_ engine_" is as a process eng/Reer developing, evaluating or introducing processes,
methods and tools into pt_tice. Another calls for involvement with development or maintenance of a specific product
as process manager or support engineer. Each role is influenced by the need to take account of the inherent uncertainty
associated with software development and the maintenance of user satisfaction. In specifying, evaluating and acquiring
or developing metla3ds and tools, significant emphasis must be placed on the need to highlight, capture and record
as..qnnptiom in retrievable fashion, whatever their basis or nature. Linkages must therefore be provided in all relevant
tools that alert the participants in the wogramming process wbenever ccmain actions we taken to provide an appropriate
po/mer to any such assumption. It is not possible to present here an exhaustive analysis of the circumstances when
such action is desirable or necessary. An indication of the breadth of _nc_m is provided by a list that includes such
varied activities as the choice of factms to be conskk, red and to be excluded from consideration in _e implementation,
the adoption of specific theories coveting some aspect of the applkatkm, the sekction of algorithms, design decisions of
any sort, the fixing of branch condifiom, the adoption of computational wocedure_ assignment of values to data and
constants and so on.

The discussion of the previous paragraph primarily addressed the issues raised by pragmat/c wtcertainty that causes
software pollution through the gradual erosion of assumption validity. Consideration of Heisenberg type unity,
while interacting strongly with the former, focuses attention more specifically on the development process; its slx_cture,
activities rigour, degree of mechanisation and support. The present paper can only provide an introductory overview,
indicating that control of evolution driven by this class of uncertainty is a major element of the software manager's task.
Not for nothing has softwwe management been long described as the management of change. And in many ways this
might be seen as the prime responsibility and oppot_m_y for software engineering and the software e_ginenr.

Simply summmi.u_ the Woceu of development and evolution must be designed, not only to produce a product that has
the desired, even optimum, aUributes at the time of delivery. It must ensure that the initial satisfaction is maintained and
even enhanced throughout the iifeth_e of the system. All stages of the wocess must be designed (methods and tools) to
identify amd record areas in which changes may occur and those in which, if changes occur, the consequences to the user
or to adaptive action ate non-triviaL It must also provide and integrate management decision and control Wocedures to
ensure that appropriate procedures we adopted and practised with regard, for example, to change authorisation.
planning, execution and installation. This, in turn, implies that the necessary information is available or drawn to the
auention of both the manager and those involved in technical implementation. The problems of information capture,
retention and retrieval become central and one in which rule and knowledge based systems find important application.

Recognition of the above lXoceu needs isnot new.Their unifgation in d_ context of the uncenalnty _ merely
reinfo¢ces what has wevionaly been recognised and adopted. In association with other necessary steps not discussed
here, they present a major challenge for the continued retrmement and extension of the software development and
evolution process, and the methods and tools that ate its building blocks. Software engineering faces a major
oppom_ty aad chall_ge.

GOdel type _ty poses somewhat different, perhaps less immediate, cbalknges. It must not be ignoced since it has
an impact on modelling and achieving complete tmderstsmling of the process. In particular, its implications may arise in
the the design and support of fmmal aspects of the pmceas. The software engineer must, however, have at least an
undemanding of the woblem and when, if at all, it must be taken into considexation

4 Conclusions

In its main section this psper has wesemed what may at first encounter appear as a largely philosophical and theoretical
result ofliule cemequence. Itis to be hoped that the brief introduction to the challenges this result poses to software
engineering and to ways and means whereby this challenge may, indeed must, be met, has convinced the reader
otberwue.

M. Lehman

Imperial College
7 of 28

-7-

An altenmlive reaction may be to say that most, if not all, of what has been _ is wi_y _. It _ __y,
_ been._,msed _ in _ _q__dity of _ _ deve_t andof i. p._d_ _ far_of
the levelsof reliability demandedby tl_ ex_g rmge _ mm_iu _acau_. Concernwas firstpublicly expre_
at the _ _ Workshop m Software Engineering [HAU69]. Dijkstra [DIJ69, 72]. Home [69. 71]. IF1P

programming methodology working group WG 2.3 [GRr78] and many others haye been_g the _ for..program
cmrecmess fog over two decades, Debate on SDI led by Pamm [PARgS] and others, and on the uses _ lim_u_ of
Im_ techniques [DEM79, VAR79] md pmgrm verificatm [FET88, VAR89]. reflect sums conceen" within the wider
computing community. Nenmann [NEUM], Thomm [T[-IO89] and others are exposing the limitations of computer
coalmi in life_ applications. Each of these anthonl discusses specific aspects of the problem of reliable software
development Relinbi,ty is here used in the sense dmthe product will produce _ results whenever executed
its mlneqnem lifetime. Their concern is not confined to academic cizcles. Awareness of the problems experienced in
software development as reflected in the management of the development pfcr,Css is wi_ in indusiry. In most
inlanc_ these have been almlxtted to human failure. "Why can't lXOganmu:N be like other Engineers?" is a frequently
heardp_nt in_.

It must be recognised that the introduction and continued application of software dependent computer systems faces
problems not relevant in other disciplines [LEH85, 89]. Real and fundamental differences exist between the
development and adaptation (evolution) of software aad that of physical artifacts. Yet, as computers are applied ever
mine widely, the impficati_of _ differences have not been Sufficiendy considered in seeking to improve the
indus_al Im)cess whereby applications are implemented.

Further problems arise from the need to embed assumptions about an ever changing application environment in the
software, change that is _f_-at_l du'_-_ 0]"tbe sot'tware and Use o-rthe-compu_, it is the thesis of this
paper that uncertainty in the detailed pm_rti_ of software and its behaviour when executing and, therefore, in
computer application is inescapable. This fact is a challenge to society in general, to prime movers in computer
application, to implementms and to mppurfing software engineers in purficulm'. The first become involved when they
select aad authorise the applications and determinethe properdesof the end system;the latter two classesbecausethey
c_3_five, conlrol aad execute the process of implementation. Uncer,_tty will always be there. It is the responsibility of
prime movers that society is not unnecessarily exposed through thoughtless application. To avoid this, they and society
at large must be informed of the threat. It is the responsibility of software engineers and implementogs that the public
are informed, and to ensure that risks associated with uncertain behaviour and the consequences, should the
unanticipated be encountered, are minimised. Rigorous enfogcement of advanced software technology, systematic
application of disciplined methods and mechanisation can make a fundamental contribution to this end. Their
widesinad, if not universal, adoption must be accepted as aa urgent societal priority.

Relative to the concerns expressed, some aspects of the phenomena discussed in the present paper may appear to have
little practical signit'w.ance. This is not so. These phenomena and issues related to them reflect basic and intrinsic

of the process of computer program development, usage and evolution, an activity_ that intimately effects the
whoie of mankind. They provide a unifying concept to manifold observations with concepts and components of a theory
of software development The latter is essential fog further steady pro_ towards a reliable, responsive and cost
effective technology for the development of computer based systems that can be commissioned with every confidence
that they will provide cmtinning satisfactory serve.

Computer usage is peneu'afing ever deeper into the very fabric of society. The dependence of mankind on the
cogrecmess of computer systems in general, and on software in particular, becomes ever greater. Correctness is,
primarily, a relationship between the state of the application domain at the time when the results of a compu_tion are
applied and the software which plescribes the computation. The technology, extension and wide application of formal
medmds m maximise the opportunity fog initial correcmess over the process stages where they can be applied is a most
significant first step. To ensure continuing safety in system usage it must be accompanied by the wider use of advanced
software engineering technology. That discipfine, as reflected in the software development and evolution process, in the
methods _ and in process mechanisation, is the means whereby uncertainty and the consequences of uncertainty can
be minimised and user satisfaction maintained. Above all, however, emphasis must be placed on responsibility,
conscietuioJ_ess and care in the selection, definition, development and conlrol of computer applications. This is a

that _ not only computer scientists and software engineers. It is a matter for induslry, for governmenk fog
all levels of the educational system, indeed for all of mankind.

Given the increasing dependence of mankind on software based systems it is a matter of urgent priority to cope with
these issues. Su'ict discipline and mechanisation through the application of advanced software engineering in all its
aspects offe_ a practical solution, reducing uncertainty to the level at which it is present in all human activity. The time
for such inm3duction is ripe andthepaper has pointed to ways in which it may be achieved.

M. Lehman
Imperial College
8 of 28

-8-

$ References

['BEL71] Belady L A and Lehman M M, Programmin 8 System Dynamics or the Metadynamlc$ of Systems in
Maintenance and Growth, IBM Res. Pep. RC 3546, Seix. 1971, T J Watson Re& Cur., Ymklown I-It&NY, 10598

[BEL72] id.,An IntroductiontoProgram GrowthDynamics,inStatisticalComputer PerformanceEvaluation,W
r're_be_er(ed),AcademicPress,New York,1972,pp.5O3 -511

[BEL76"]. id., A Model of Large Program Developmem, iBM Sy$. J. voi. 15, no. 3, pp. 225 - 252

[BON77] BondiH, The Lure ofCompletenexs,The EncyclopediaofIgnorance,R Duncan and M Western-Smith
(edt),Pergamm Press,Lmdm, 1977,pp.5.8

[BLU89] Blum B I, Vo/uwn_,D_ance, and Prod_d_y, J.o£ Sys. & Softw., voL 10, no. 3, Oct. 1989, pp. 217 - 226

[DEM79] DeMdlloR A,LiptonR landPeflisA J,SocialProcessesand ProofsofTheoremsand Programs.CACM,
vol.22,no.5,May 1979.pp.271-280

[DD69] Di_Lvza E W, A Con_ructlve Approach to the Problem of Program Correctness, BIT, vol. 8, no. 3, 1969,
pp. 174- 186

[DIJ72] id.,TheHsunbleProgrammer, ACMTudngAwardLec_.,CACM, voL 15, no. 10, Oct. 1972 pp. 859- 866

[FET88] Fetzer_JJ_ Pr_ram V_ri_cati_n: The Very _dea_ CACM" v_ 32_ no_8_Sep¢. _988" pp. _48 - _63

[GOD31] G0del If, Ober Formal Unentscheidbare S4t:e dor Principia Mathematica und Verwandter Sysreme,
Mommsheftt flit _al3"k und Physik, voL 38, pp. 173 - 198

[GRI78] Gries D, Programming Methodology. A Collection of Arrlcles by Members of IFIP WG2.3, Springer
Verla8, New Yock, 1978

[HOA69] I{oate C A R, An Axlomat/c Baxtcfor Conspsaer Programming, CACM, voL 12, no. 10, Oct, 1969, pp. 576
-583

[I-IOATI] id, "Proofof a Program FIND',CACM, vol. 14,no. 1,Jm. 1971

[JONSOa] Jones C B, The Role of Formal Specifications in Software Development, InfoTech State of the Art Conf. on
L_Cycle Maangement, Report se. 8, no. 7, 1980, inv. papecs, pp. 117- 133

[JON80b] kL, Software Development- A Rigorous Approach, Preadce - Hall Inc., New York.1980

[LEH69] Lehman M M, The Progranm_g Process, IBM Re& Rep. RC 2722, IBM Res. Centre, Yorktown Heights,
NY 10594, Sept 1969 and in [LEH85], pp. 39 - 84

_4] id., Programs, Cities, Students - _ to Growth, Imperial College. Inaugural Lecture Series, vol. 9, 1970
- 1974. Also [GRIT8], pp. 42-69 and [LEH85], pp. 133 - 163

[LEH77] id., Human Thought and Action as aa Ingredient of System Behaviour, The Encyclopedia of Ignorance, R
Duncan and M Weslon-$mith (eds.), Pergamon Press, London, 1977, pp. 347 - 354

[LEHSO] id..Programs.LifeCyclesand l_ws of SoftwareEvolution,Proc.IEEE SpecialIssueon Software
Engineering.Sept.1980,pp.1060-1076

[LEH84a] id.,A FurtherModelofCoherentProgrammingModels.in[SPW84],Feb.1984.pp.27-35

[LEH84b] Lehman M M, Stenning N V and Turski W M, (1984). Another Look at Software Design Methodology,
ICST DoC Re& Rep. 83/13, June 1983 and Software Engineering Notes, voL 9, no 2, April 1984, pp. 38 - 53

[LEH85] Lehman M M and Belady L A, Program Evolution. Processes of Software Change, Academic Press,
Londm, 1985

[LEH86] Lehnum M M, Advanced Software Technology - Dewlolnnent and Introduction to Practice, Invited Paper,
Informatioa Processing '86, Proc. IFIP Congress 1986, Dublin, September 1-5, Elsevier Scier_ Publishers (BV),
(North Honand), pp. 6O5 - 661

M. Lehman

Imperial College
9 of 28

-9-

[t.El.IB7a]Lehman M M, Model BasedApproach toIPSE Arcldtecmreand Design-The IST ISTAR Projectas an
Instandation,Inv.Contr.,Quart.Bul.,IEEE Comp. So(:.Tech.Comm. on DalatmseEng.,Sp. Ins.on _oftw.Eng.

Systemand _ Reqs.,voL I0,no.I,1987,pp.2- 13

_.EH87b] t,elmtmM M andTmski W M, Essent_PropertiesOflPSEs,SoftwareEngineeringNotes,voL 12,no.I,

pp.52- 55

[I.EI-187c]Lehnum M M. Process Models. Process Programs, Programming Support - Invited Response To A Keynote
Address By Lee Osl_'wei/. Prec. 9th Int. Conf. on Softw. Eng., Monterey. CA. 30 March - 2 AW. 1987. IEEE Comp.
Soc. pub. no. 767. _ Cat. no. g'/L"H_32-3, pp. 14 - 16

[LEH89] id., Uncertalmy in Computer Application and its Control Through the Engineering of sojhc_e, in Software
Maintemuge: Resea_ and Practice voL l, no. 1, Sept. 1989, Jolm Wiley & Sons Lid, London and New York. pp. 3 -
27

[NAU69] Naner P and P.andell B, Software Engineering - Report on a Conference Sponsored by the NATO Science
Commerce. Ga'misch, 1968, Scientific Affairs Divi._on, NATO, Brussels 39, 1969

[NEUM] Nonmaon P G (ed), Risks to the Public in Computers and Related Systems regular feature in every issue of
Software Engineering Notes, Special Interest Group on Software Engineering, ACM Press, ACM. NY, NY 10036

[05"I"87]Osterwefl L, Software Processes are Software Too, Proc. 9th Int. Conf. on $oftw. Eng., Monterey, CA. 30
Ma_h - 2 AW. 1987, IEEE Comp. SOc. Pub. no. 767, _ Cat. no. 87CH2432-3, pp. 2 - 13

[PAR85] ParnasD, SoftwareAspectsofStrategicDefenseSystems,AmexicanScientist,vol.75,no.3,Sept.- Oct.
1985,pp.432 -440.RevisedversioninComm. ACM. vol.28,no.12,Dec. 1985,pp.1326- 1335

[SIM69]Simon HA, The Sciencesofthe_, MJ.T.Press,Cambridge,MA. 1969,2rided.1981

[SPW84] PortsC (ed),ProceedingoftheSoftware.Process.Workshop,Egham, Surrey,UK.,Feb.1984.IEEE,cat.no.

C p. v.c., no.

[SPW86] WLledenJ C and Dowson M (eds),SE NotesSpecialIssueon the2nd InternationalWorkshop on the
SoftwareProcessand SoftwareEnv/ronments,CotodeCaza,CaL,27-29Maxch 1985,vol.11,no.4,Aug. 1986

[SPW87] Dowson M (ed),IterationintheSoftwareProcess,Pmceedin_ ofthe3rdInternationalProcessWorkshop,
IEEE Comp. SOc. Press, Match 1987

[STE85] Stennin8 N V, Software Engineering: Present and Future in The CorpOrate Database, State of the Art
Reports, D Iggulden (eft'),se. 13, no. 3, Pergamon Infotech Lid, Maideahead, England, 1985, pp. 83 - 93

rmosg] Thomas, Z> elol;, ntMethod/o, comp r sys,e, /Bcs L ct ,i.
of Computing. vol. 1, no. 1, 1989, pp. 5 - 18

['ruRgl] Tutski W M, SpecO_cation ax a Theory with Models in the Computer Worm and in the Real WorM, Infotech
State of the Art Repo_ se. 9, no.6, 1981, pp 363 - 377

rrUR87] Turslfi and Mmbaum T, The Spec_qcation of Computer Programs, _ Wesley, London, 1987

[VAR79] Variotm correspondents, Comments on a Paper by De Milk), Lipton and PerUs, [DEM79]_ Comm. ACM,
voL 22, no. ll,Nov. 1979, pp. 621 -630

[VAR89] Various coffespondent& Comments on a Paper by Fetzer, [FET881, Comm. ACM, vol 32, no. 3, March
1989, pp. 287 - 290 and pp. 374 - 381

[ZUR67] Zutcher F W and Randell B, lterative Multi-Level Modelling - A Methodology for Computer System
Design, IBM Res. Rep. RC 1938, Nov. 1967, IBM Res. Centre, Yorktown Heights, NY 10594 and Information
Processing '67, Proc. IHP Congr. 1968, Edinburgh, Aug. 1968, pp. D138 - 142

mm1453[p_pe_]
17November 1989

M. Lehman
Imperial College
I0 of 28

VIEWGRAPH MATERIALS

FOR THE

M. LEHMAN PRESENTATION

5794

i

SOFTWARE, SYTEMS & APPLICATION UNCERTAINTY
&

ITS CONTROL THROUGH THE ENGINEERING OF SOFTWARE

SEL SOFTWARE ENGINEERING WORKSHOP

29 NOVEMBERI989

M M LEHMAN

LEHMAN SOFTWARE TECHNOLOGY ASSOCIATES LTD

60 ALBERT COURT

PRINCE CONSORT RD

LONDON SW7 2BH

&

DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY& MEDICINE

180 QUEEN'S GATE

LONDON SW7 2BZ

Nov 20, 1989 mt_45 lc[¢haml41

M. Lehman
Imperial College
11 of 28

PROGRAM CLASSETICATION

• S-TYPE

• P-TYPE

- COMPLETELY DEFINED BY SPECIFICATION

CRITERION OF SUCCESS IN IMPLEMENTATION

CORRECTNESS RELATIVE TO SPECIFICATION

PROVABLY OR BY VIRTUE OF DERIVATION

SOLVES SPECIFIC PROBLEM

CRITERION OF SUCCESS IN IMPLEMENTATION

SATISFACTORY (CORRECT?.) SOLUTION
'SATISFACTORY' MUST BE DEFINED

• E-TYPE ITS USE REALISES APPLICATION IN REAL WORLD

CRITERION OF SUCCESS IN IMPLEMENTATION

:=, USER SATISFACTION

=, ON EACH APPLICATION, THAT IS,

WHENEVER RESULTS ARE USED

NOTE - P & E TYPES MAY BE COMBINED INTO UNIFIED A - TYPE THIS

BISECTS PROGRAM CLASSES INTO THOSE THAT MUST BE CORRECT &

THOSE THAT MUST BE SATISFACTORY AT THE TIME WHEN APPLIED

Nov 20. 1989 nun1451c[¢h_sl-4

M. Lehman

Imperial College
12 of 28

THE NEED FOR CONTINUING CHANGE

• USER SATISFACTION CRITERION OF SUCCESS

• INITIAL CORRECTNESS NECESSARY TO ACHIEVE IT.

PROGRAM ELEMENTS SHOULD, THEREFORE, BE
CONSTRUCTED FROM S-TYPE ELEMENTS

• CORRECTNESS ALONE NOT SUFFICIENT

. RESULTS OF EXECUTION MUST BE ACCEPTABLE

WHEN APPLIED

• REAL WORLD DYNAMIC, UNDERGOING CONTINUING
CHANGE

• SOFTWARE IS A MODEL OF THAT WORLD WITH BUILT

IN, POSSIBLY IMPLICIT OR HIDDEN, ASSUMPTIONS

• RESULTS OF EXECUTION WILL REFLECT THESE

• VAMDITY OF SOME, EVEN IF INITIALLY JUSTIFIED,

MUST HAVE CHANGED SINCE BEING EMBEDDED

• SYSTEM SHOULD UNDERGO CONTINUING CHANGE

Nov 20. 1989 mmlaSlc[chartsl 6

M. Lehman

Imperial College
13 of 28

CONTINUING EVOLUTION

. PROGRAM DEVELOPMENT, INSTALLATION, USE

& EXOGENOUS CHANGE, MODIFY:
APPLICATION

PERCEPTION OF BOTH

UNDERSTANDING OF PROBLEM

BASIS OF & JUSTIFICATION FOR ASSUMPTIONS

AND OF POSSIBLE APPROACHES TO SOLUTION

NEEDS, OPPORTUNITIES, AMBITIONS

TECHNOLOGY

• CRITERIA FOR PRODUCT ACCEPTABILITY ALSO

CHANGE

• DRIVEN BY FEEDBACK

EXTERNAL CHANGE

• EVOLUTION INTRINSIC TO COMPUTER APPUCATION,

• SYSTEMS MUST BE CONTINUOUSLY EVOLVED TO

ADAPT THEM TO CHANGING APPLICATION DOMAIN

& TO CHANGING VIEWS OF THAT DOMAIN

SOFTWARE THE MEANS

• PROCESS MUST SUPPORT & CONTROL EVOLUTION

Nov 20. 1959 rnml4$1c{charttl'7

M. Lehman

Imperial College
14 of 28

FIRST LAW OF PROGRAM EVOLUTION:.

E.TYPE PROGRAMS MUST BE CONTINUALLY CHANGED
ELSE THEY DECLINE IN USEFULNESS &
IN THE SATISFACTION THEY DELIVER

UNIVERSAL EXPERIENCE AS ILLUSTRATED BY

LIFE CYCLE COSTS

INITIAL DEVELOPMENT < 30%

EVOLUTION (MAINTENANCE) • 70%

• MAINTENANCE TO PRESERVE
- USER SATISFACTION

- VALIDITY OF ASSUMPTION SET

• MAINTENANCE AS CONTINUING ADAPTATION

MAINTAINING MODEL RELATIONSHIP BETWEEN
REAL WORLD & SOFTWARE

Nov 20, 1989 mm1451 c[clum.s]-8

M. Lehman

Imperial College
15 of 28

SOFTWARE AS MODEL OF REAL WORLD

REAL WORLD

. INDEPENDENT EXISTENCE

SOFTWARE

• MODEL

• NATURAL LAWS • THEORIES
MODELS

• EFFECTIVELY UNBOUNDED • BOUNDED

• EFFECTIVELY CONTINUOUS • DISCRETE

• DYNAMIC • STATIC

• PHYSICAL • TEXTUAL

• CONCRETE • ABSTRACT

• AT MOST, INFLUENCED BY • PART OF

SOLUTION SYSTEM

IN DEVELOPING SOFTWARE MODEL THAT LARGELY
DETERMINE SYSTEM FUNCTIONAL CHARACTERISTICS

ASSUMPTIONS PLAY KEY ROLE

Nov 2_ t919 rnm1451c(chsmi-9

M, Lehman

Imperial CoUese
16 of 28

NATURE OF REAL WORLD

. INDEPENDENT EXISTENCE THAT INCLUDES

CHANGING, POSSIBLY UNPREDICTABLE, ELEMENTS

. EFFECTIVELY UNBOUNDED - TYPES, NUMBERS OF

=_ ATTRIBUTES

=, STRUCTURES

=, PROCESSES

METRIC PROPERTIES

• EFFECTIVELY CONTINUOUS ENTITIFS

STRUCTURES

PROCESSES

DATA

• DYNAMIC - ALWAYS CHANGING

• NATURAL LAWS WHICH CAN BE APPROXIMATED BY
MODELS, PERHAPS CONTROLLED,BUT NOT CHANGED

• CONCRETE CAN BE OBSERVED

EXPERIENCED

MEASURED

• PHYSICAL PROPERTIES CONSTRAINTS

LIMITS

Nov 20, 19119 mini451 ¢[chansl- t0

M. Lehman

Imperial College
17 of 28

NATURE OF SOFTWARE

. MODEL OF APPLICATION IN ITS DOMAIN

• MODEL OF SOLUTION IN ITS DOMAIN

• PART OF SOLUTION SYSTEM IN ITS DOMAIN

• STRICTLY BOUNDED -
(FINITE) -

ATTRIBUTES

STRUCTURES

ALGORITHMS

DATA REPRESENTATIONS

• DISCRETE ENTITIES
STRUCTURES

PROCESSES

- DATA

• STATIC - HUMAN INTERVENTION FOR CHANGE

• BUILT IN THEORIES -

• ABSTRACT

REFLECT (MODEL) LAWS

- MATHEMATICAL PROPERTIES

- CAN ONLY BE=UNDERSTOOD

. MATHEMATICAL MANIPULATION

FOR FORMALISED REPRESENTATIONS

• TEXTUAL
REPRESENTATION

SEMANTICS

SYNTACTIC CONSTRAINTS

- PRAGMATIC LIMITS, IF ANY?

IN DEVELOPING SYSTEM, ASSUMPTIONS PLAY KEY ROLE

Nov 20, 19119 mm1451c[chattsl-t I

M. Lehman

Imperial College
18 of 28

NEED FOR ASSUMPTIONS

• FINITISATION PHENOMENOLOGIC_kL

COMPUTATIONAL

• DISCRETISATION PHENOMENOLOGICAL

COMPUTATIONAL

• ABSTRACTION SELECTION

DISCARDING DETAIL

• ADOPTION OF THEORIES

• DEVELOPMENT OF PROCEDURES

• DATA VALUE

RATE OF CHANGE

DEPENDENCIES

DEVELOPMENT OF MODELS PHENOMENOLOGICAL

OPERATIONAL

MANAGERIAL

COMPUTATIONAL
PROCEDURAL

• ALGORITHMS SELECTION

REALISATION

• RELATIONSHIPS

• etc., etc.

Nov 20. t989 mini451 c[chartsl- 12

M. Lehman

Imperial College
19 of 28

ASSUMPTIONS

RELATE TO REAL WORLD

APPLICATION

USERS

COMPUTATIONAL PROCEDURES

SOFTWARE & SYSTEM

EMBEDDED DATA

ASSOCIATED DATA BASE

• ESTIMATE ONE REAL-WORLD ASSU_ION FOR

EVERY TEN LINES OR SO OF PROGRAM CODE

• IN LARGE PROGRAM THERE MUST BE ASSUMPTIONS

OF QUESTIONABLE VALIDITY

• MANY WILL BE IMPLICIT

• SOONER OR LATER SOME, THEN INVALID OR MISSING,

ASSUMPTION OR DATA WILL CAUSE PROBLEM

BECAUSE OF - FREQUENCY OF EXECUTION
- SPEED OF EXECUTION

- TIGHTNESS OF USER COUPLING

• RESULTS OF EXECUTION MUST BE CORRECT WHEN

USED

• CHANGES CANNOT BE MADE INSTANTANEOUSLY

WHAT ARE IMPLICATIONS OF THESE FACTS OF LIFE?

Nov 20. 1989 mm1451c[chaml-13

M. Lehman

Imperial College
20 of 28

CONCEPTUAL IMPLICATIONS

• ALL ASSUMPTIONS SHOULD BE MADE EXPLICIT

CAPTURED, RECORDED & MAINTAINED VALID

• DATA (VALUE, RANGE, TYPES) MUST BE REVIEWED

AS APPROPRIATE, BEING TIME & EVENT DEPENDENT

FAILURE TO DO SO CREATES SOFTWARE POLLUTION

=_ UNCERTAINTY IN APPLICATION

:_ ASSOCIATED RISK

• MAINTENANCE :_ USER SATISFACTION

=, ASSUMPTION SET

- NEED FOR ALERTNESS, REVIEW, UPDATING

=_ CONTINUING EVOLUTION

PROFESSIONAL RESPONSIBILITY TO SOCIETY

CONTROL OF APPLICATIONS

SPECIFICATION & DEVELOPMENT

EVOLUTION

=, MINIMISATION OF RISK OF

. ENCOUNTER WITH INVALID OR

INCOMPLETE ASSUMPTIONS

_, CONSEQUENCES SHOULD IT OCCUR

• INTRINSIC UNCERTAINTY IN E-TYPE SOFTWARE

& HENCE

• IN COMPUTER APPLICATION IN REAL WORLD

Nov 20, 1989 mm1451c[chat_]-14

M. Lehman

Imperial College
21 of 28

AN UNCERTAINTY PRINCIPLE

THE OUTCOME, IN THE REAL WORLD, OF E-TYPE
SOFTWARE SYSTEM OPERATION IS INHERENTLY

UNCERTAIN WITH THE PRECISE AREA OF
UNCERTAINTY ALSO NOT KNOWABLE

Nov 20. 1989 mrnJ451c[chartsl-t5

M. Lehman

Imperial College
22 of 28

TYPES OF UNCERTAINTY

GODEL E-TYPE PROGRAM IS A MODEL OF A MODEL... OF

A MODEL OF AN APPLICATION IN REAL WORLD

• EACH MODEL PAIR CAN BE INTERPRETED AS A

THEORY & A MODEL OF THAT THEORY OR AS

A SPECIFICATION & ITS IMPLEMENTATION

HENCE EVERY PROGRAM IS GODEL INCOMPLETE

- GODEL-TYPE APPLICATION UNCERTAINTY IS A

REFLECTION OF GODEL INCOMPLETENESS

HEISENBERG - SYSTEM DEVELOPMENT, INSTALLATION & USE

CHANGES APPLICATION, SOLUTION, PERCEPTION

& UNDERSTANDING OF THESE

- THE MORE PRECISE KNOWLEDGE IS OF THE

APPLICATION & ITS SOLUTION THE LESS WILL

THE RESULTS OF EXECUTION SATISFY USER

- THE SOURCE OF NON-SATISFACTION, BEING A

FUNCTION OF PERCEPTION & UNDERSTANDING,

CANNOT BE PREDICTED

PRAGMATIC • VALIDITY OF THE TOTALITY OF EMBEDDED

ASSUMPTIONS, EXPLICIT & IMPLICIT, CANNOT

BE KNOWN OR MAINTAINED RESPONSIVELY,

- RESULTS OF EXECUTION ARE, THEREFORE NOT

COMPLETELY PREDICTABLE

• THERE IS CLOSE RELATIONSHIP BETWEEN THE HEISENBERG &

PRAGMATIC TYPES OF UNCERTAINTY

Nov 20. 1989 ram|451 c[clm'ts]-! 6

M. Lehman

Imperial College
23 of 28

PRACTICAL IMPLICATIONS

. AWARENESS OF PROBLEM, AVOIDING IMPLICIT
ASSUMPTIONS

• ADOPTION & IMPLEMENTATION OF ASSUMPTIONS

MUST BE CONTROLLED, RECORDED & REVIEWED

• DITTO FOR DATA

• ANTICIPATE & _ENTIFY POTENTIAL CHANGES
& CHANGE SENSITIVE AREAS

• SYSTEMATIC, PERIODIC, DETAILED SYSTEM WIDE

REVIEW BY JOINT USER/IMPLEMENTATION TEAMS

• DISCIPLINED, CONTROLLED, RECORDED

EVOLUTION (MAINTENANCE)

. TOTAL PROCESS MECHANISATION WITH

ACTIVE PROCESS SUPPORT & GUIDANCE

• EDUCATION & FAMILIARISATION OF SOCIETY

Nov 20, 19119 mm1451c[chKts]-17

M. Lehman

Imperial College
24 of 28

VIEWPOINT

• SOF'IT_ARE AN ORGANISM NOT AN ARTIFACT

GROWS & EVOLVES THROUGH FEEDBACK DRIVEN

PROCESS CONTROLLED BY HUMAN PERCEPTION

UNLIKE THE MECHANISTIC, SELF REGULATING PROCESSES

THAT DRIVE & CONTROL DEVELOPMENT & EVOLUTION OF

BIOLOGICAL ORGANISMS TO YIELD STATISTICAL ADAPTATION

• DEVELOPMENT/EVOLUTION PROCESS DETERMINES

PROGRAM CHARACTERISTICS AND QUALITY

PRODUCT

PROCESS

• PROCESS THE KEY TO SATISFACTORY EXPLOITATION
OF COMPUTER TECHNOLOGY

• DESIGN, SUPPORT, CONTROL RESPONSIBILITY OF
SOFTWARE ENGINEERS = PROCESS ENGINEERS

Nov 20,1989 mm1451c[chaml-18

M. Lehman
Imperial ¢_ollege
25 of 28

SOFTWARE ENGINEER & PROGRAMMER

• TERMS INCREASINGLY USED SYNONYMOUSLY

• CONCEPTUALLY WRONG

• COUNTER-PRODUCTIVE

• ROLES ARE COMPLEMENTARY AND MUTUALLY

SUPPORTIVE

mmt451cichaml-t9

M. Lehman

Imperial College
26 of 28

PROGRAMMER

• PRIMARY TASK: STEP BY STEP TRANSFORMATION OF

APPUCATION CONCEPT INTO SOLUTION SYSTEM

• EACH PROCESS STEP TRANSFORMATION OF A

SPECIFICATION INTO CORRECT IMPLEMENTATION

CONCEPT VERBALISATION =_ REQUIREMENT

REQUIREMENT =_ SYSTEM SPECIFICATION

SPECIFICATION =, EXECUTABLE REPRESENTATION

CHANGE NEEDED :m IMPLEMENTATION

OTHER VITAL TASKS SUPPORT FOR USER

SYSTEM MAINTENANCE

SYSTEM EVOLUTION

- VALIDATION

OF EVERYTHING

• PROGRAMMING RELATES TO AND INCLUDES ALL

INVOLVEMENT IN ANY ASPECT OF DEVELOPMENT

OR EVOLUTION OF SPECIFIC
- SYSTEM ELEMENT(S)

or - PROGRAMS & SYSTEM(S)
or - FAMILIES OF SYSTEMS

PRODUCT ENGINEER

Nov 20, 1989 mm1451c[chaml-20

M. Lehman
Imperial College
27 of 28

SOFTWARE ENGINEER

• PRIMARY CONCERN: DESIGN, CONTROL, SUPPORT

DEVELOPMENT & EVOLUTION PROCESS
- PROCESS ITSELF

- METHODS

- TOOLS

SELECT, DEVELOP & REDUCE TO PRACTICE
- METHODS

- TECHNIQUES
- PRACTICES

PROCEDURES

- DIRECT TOOLS

- GENERAL SUPPORT

• INTEGRATE & INSTALL METHODS, TOOLS & IPSEs

TO PROVIDE COHERENT PRODUCT, PROJECT &
PROCESS SUPPORT FOR AN ORGANISATION & ITS

ACTIVITIES OVER LIFE TIME OF EACH APPLICATION

• SOFTWARE ENGINEER CONCERN- PROCESSES BY

WHICH SYSTEMS ARE DEVELOPED, PRODUCTS

CREATED & MAINTAINED SATISFACTORY

INVOLVEMENT WITH SPECIFIC SYSTEM
PROJECT DESIGN

PROCESS DESIGN

PLANNING

DEVELOPMENT OF PROJECT-

SPECIFIC _ METHODS
TOOLS

MANAGEMENT SUPPORT

PROCESSES MANAGEMENT

Nov 20,1989

PROCESS ENGINEER

mm145lc[chartsJ-21

M. Lehman

Imperial College
28 o[28

TESTING IN A REUSE ENVIRONMENT

ISSUES AND APPROACHES

John C. Knight

Department of Computer Science

University of Virginia
Thornton Hall

Charlottesville, VA 22903

A Summary

Submitted To The Fourteenth Annual Software Engineering Workshop

Goddard Space Flight Center

Greenbelt, Maryland.

December 4, 1989

J.C. Knight

Univ. of VA

1 of 18

Testing and Reuse John C. Knight

1. ISSUES

An economic advantage often claimed for reuse is that parts can be tested extensively
before insertion into a reuse library. The term certified part is sometimes used to describe parts

that have been tested prior to entry into a library (e.g., [11]) although certified is not a well
defined tenn. There is the vague expectation that building software from tested parts will

somehow make testing simpler or 'less resource intensive, and that products will be of higher
quality [2, 6, I 1]. For example, in [4] the potential productivity improvement through reuse is

given for the entire lifecycle. The various aspects of testing are listed, and a potential reduction
in cost resulting from reuse is shown for each.

Although using tested parts might offer some savings in testing, the situation is actually

much more complex than this simple notion implies. The reuse paradigm raises many new issues
in the area of testing, specifically:

(1) Part quality.
By definition, a part that is entered into a reuse library is being offered for use by others
with the assumption that the more times it is used the better. This means that the part has to
be prepared for every possible use if users are to have confidence that any phase of testing
can be reduced or eliminated [10].

(2) Distribution of parts.
To maximize economic benefit a reuse library will be distributed widely, and parts will

have to be built with portability in mind. They will also have to be tested so as to minimize
the difficulties arising either from changes in the support environment or from porting.

(3) Part adaption.
Adaption, i.e., changing a part before it is used, is likely to be extensive with modern

systematic reuse. Unfortunately, once a part is changed, the results of testing that took
place prior to placing the part in the library carmot, in general, be trusted unless great care is
exercised.

(4) Adaptable parts.
Adaption has been recognized as a necessity for generalized reuse to the extent that

provision for it is finding its way into programming languages. Generic program units are
present in Ada [12], for example, to support adaption and they present additional challenges
for testing. The parameters used with Ada generic units are not merely for numeric or

symbolic substitution. Subprograms can be used as parameters thereby allowing different
instantiations to function entirely differently. This raises the question of exactly how, or

even if, generic program units can be tested in any useful way [3].

(5) Part use.
A reusable part will be used in many different circumstances. Pans will contain
assumptions about their use that may be undocumented yet must be complied with for
correct operation. This indicates the need for increased attention being paid to integration

testing during system development.

(6) Part revision.
Pans will be enhanced over time to improve their performance in some way yet maintain
their existing interface. Systems built with st_ch parts are then faced with a dilemma.

Incorporating the revised pans might produce useful performance improvements but the

resulting software will differ substantially from that which was originally built and tested.

(7) Custom software.
Although a new application might be built with parts from a reuse library, it will also

-1- J.C. Knight
Univ. of VA
2 of 18

Testing and Reuse John C. Knight

inevitably include custom software. The question that then arises is how to take advantage
of the testing that has been performed on the parts to reduce the testing of the final system.
Somehow test cases have to target the custom software rather than the reusable parts.

In summary, the various phases of testing that occur in a traditional development

environment are still present but are changed in Several ways when development is based on
reuse.

2. APPROACHES

Modifications of existing techniques can be employed to deal with many of the issues raised
above. Some issues, part revision for example, present problems that are similar to those which

arise during maintenance. However, topics such as testing adaptable parts are not addressed by
existing techniques. New approaches that address the problems of adaption and adaptable parts
are discussed here.

Two forms of adaption are considered, anticipated and unanticipated. Anticipated adaption

occurs when a user exploits facilities for change that were designed into the part, such as occurs
with an Ada generic part or a part dependent on symbolic parameters. Unanticipated adaption
occurs when a part is modified in a way that was not planned, usually using a text editor.

A nticipated Adaption

In many cases there are restrictions inherent in the design of a part to which any anticipated
adaption must adhere. In the simplest case, a symbolic constant might be used to define a

quantity such as the size of an array dimension. Adaption then consists of setting the symbolic
constant prior to using the part, an action that was anticipated by the implementor of the part.
The design of the part, however, might impose certain restrictions such as the size being within
prescribed limits, or having some property such as being a power of two.

In a more general context, a functional restriction might be imposed on some piece of
supplied program text. A procedure parameter to an Ada generic unit, for example, might be
required to meet certain functional constraints inherent in the design of the generic unit.

In general, the checking that is required amounts to ensuring that an implementation (albeit
often a small one) meets a set of specifications. Checking an anticipated adaption is, therefore, a
special case of program verification in which the verification is of a source-to-source
transformation. The restrictions correspond to the specifications and the adaption itself
corresponds to the implementation. It is important to note that the specifications in this case.do
not derive from, and are not related directly to, the original specifications for the application. The

specifications are a consequence of the design of the reusable part.

In a non-reuse setting, this verification will be performed by the author of a part. If the part
is placed into a reuse library, however, the checks must be performed by the user. Correct use

then relies on the restriction being documented correctly by the author, noticed by the user, and
checked correctly by the user. Achieving correct use on a regular basis seems unlikely given this
"almost total reliance on human effort.

Specification languages like Anna [8] and Ada itself are not adequate to define the required
checking. Our approach to dealing with anticipated adaption is to incorporate machine-
processable statements of the required restrictions within the source text, and to check for

compliance with restrictions after adaption but before traditional compilation. Such a notation

-2- J.C. Knight

Univ. of VA

3of 18

Testing and Reuse John C. Knight

can be thought of as an assertion mechanism that is intended to operate at compile time rattler
than execution time.

This mechanism will not facilitate checking of restrictions such as required functionality.

Using the analogy with program verification once again, we deal with adaptions that cannot be
checked with a compile-time assertion mechanism using a testing system that again operates prior
to conventional compilation. The concept is to associate a set of test cases with a part that must
be executed satisfactorily by any code supplied as part of an adaption. The tests will be defined

by the author of the part and executed by the user of the part.

Unanticipated Adaption

Arbitrary changes made using an editor are likely to be required frequently in attempting to
reuse existing software. Such unanticipated adaption is far harder to deal with than anticipated

adaption because its effect on the software is unpredictable. There is still the desire, however, to
limit the amount of retesting that is needed since a part tailored specifically forreuse is likely to
have been subjected to extensive unit testing to ensure part quality.

The problem that has to be dealt with in this case is precisely that of conventional program
verification. Note, however, that the verification required is very different from the verification

required with anticipated adaption. A modified part is different from the original part and

obviously satisfies different specifications after unanticipated adaption.

Storing the specification of a part in machine-processable form and modifying the
specification along with the part with extensive automated checking and support is the best way
to deal with unanticipated adaption. Unfortunately, in general, this is not a practical approach tO

the problem. However, a promising first approach to dealing with many of the issues, at least
partially, is the instrumentation of reusable parts with executable assertions [I, 8, 9]. In fact,
Anna [8] is described as a notation for specification although it does not have the completeness
characteristics of a rigorous approach such as VDM [5]. However, Anna does provide a rich

notation for writing executable assertions.

The role of instrumentation using assertions is to include design information with the part,

in particular to permit design assumptions to be documented in a machine-p'rocessable way. The
effects of arbitrary changes cannot be checked with any degree of certainty in this way.

However, there is some empirical evidence that executable assertions provide a useful degree of

error detection when properly installed [7].

Adaptable Parts

As discussed above, the problem with anticipated adaption is to ensure that certain

requirements imposed by the design of the part are met by the adaption. The problem of testing
adaptable parts is the complement of this. It amounts to ensuring that the adaptable part will
function correctly assuming that an adaption complies with the restrictions associated with design

of the part.

The various adaptions that are provided with an adaptable part are similar in many ways to

inputs to the part. From the point of view of correctness, setting a symbolic parameter, say, has
some of the characteristics of reading an input of the same type as the parameter. The part

should, in principle, operate correctly for every valid value of the parameter just as it should for

every valid value of an input.

-3- J.C. Knight
Univ. of VA
4 of 18

Testing and Reuse John C. Knight

Adaptable parts cannot be executed without adaption. Each has to be given a "value" in
order to use the part and the key question is whether the part will work correctly once these
values are installed.

Our approach to testing of adaptable parts is based on a scenario in which the adaptable part
is instantiated with specific values for the adaptions and then tested using some conventional
approach to unit testing. Complete testing then consists of repeating this test process with
systematic settings of the various adaptions. We are defining new coverage measures to assess
the testing actually achieved.

REFERENCES

[1] Andrews, D.M. and J.P. Benson, "An Automated Program Testing Methodology and Its
Implementation", Proceedings of the Fifth International Conference on Software
Engineering, San Diego, CA, March 1981.

[2] Bassett, P.G., "Frame-Based Software Engineering", IEEE Software, July, 1987.

[3] Dowson, M, personal communication.

[4] Horowitz, E and J.B. Munson, "An Expansive View of Reusable Software", IEEE
Transactions on Software Engineering, Vol. SE-10, No. 5, September 1984.

[5] Jones, C.B., "Systematic Software Development Using VDM", Prentice Hall
International, 1986.

[6] Lenz, M., H.A. Schmid, and P.F. Wolf, "Software Reuse Through Building Blocks", IEEE
Software, July, 1987.

[7] Leveson, N.G., S.S. Cha, T.J. Shimeall, and J.C. Knight, "The Use Of Self Checks And

VotingIn Software Error Detection: An" Empirical Study" , submitted to IEEE
Transactions on Software Engineering.

[8] Luckham, D.C. and F.W. von Henke, "An Overview of Anna, a Specification Language

For Ada", IEEE Computer, March, 1985.

[91 Meyer, B., "EIFFEL: Reusability and Reliability", in Software Reuse: Emerging
Technology, Tracz, W, (editor), IEEE Computer Society Press, 1988.

[10] Russell, G., "Experiences Using A Reusable Data Structure Taxonomy", Proceedings of
the Fifth Annual Joint Conference On Ada Technology and Washington Ada Symposium,

April 1987.

[! 1] Tracz, W., "Software Reuse: Motivators and Inhibitors", Proceedings of COMPCON S'87,
1987.

[12] U.S. Department of Defense, Ada Joint Program Office, Reference Manual For The Ada
Programming Language, ANSI/MIL-STD- 1815A, January, 1983.

-4- J.C. Knight
Univ. of VA

5of 18

VIEWGRAPH MATERIALS

FOR THE

J. C. KNIGHT PRESENTATION

5794

q)
o

s,....

\

J.C. Knigh!
Univ. of VA

6 of 18

\

Z

.<

m m

_owuw

BOBBBTmBBWB

t_

J.C. Knight

Univ. of VA
? of 18

_3

I I I I I I I

Z

-|

l Z

J.C. Knight

Univ. of VA

8 of 18

• • • _ • • •

g

J

J.C. Knight

Univ. of VA

9 of 18

• • •

J.C. Knight
Univ. of VA

10 of 18

|

J.C. Knight
Univ. of VA

11 of 18

+

.2

<

°,"_ Q_

J.C. Knight

Univ. of VA

12 of 18

|

E_

J

J.C. Knight
Univ. of VA
13 of 18

Z

• • Q

J.C. Knight
Univ. of VA
14 of IB

I

<c_8

J.C. Knight

Univ. of VA

15 of 18

|

_'_z

J.C. Knight
Univ. of VA
16 of 18

f

Z
"O

J

J.C. Knight
Univ. of VA

17 of 18

©

J.C. Knight
Univ. of VA

18 of 18

i

I

I

I

K

i

Domain-Directed Reuse

Christine Braun

Rubtn Prieto-Dfaz

Contel Technology Center

15000 Conference Center Drive

Chantilly, VA 22021

Introduction

The Contel Technology Center's Software Reuse Project was established to

introduce the practice of reuse throughout the corporation, with the objective of

reduced cost and risk and improved quality in our software development efforts. We
believe that the maximum benefits are achieved when reuse focuses on a particular

application domain, making use of a standard design paradigm or architecture for that

domain. This paper will explain this concept and describe our work in implementing

such an approach.

Will reuse really make a difference?

It is currently popular for those considering the reuse problem to deplore the

unwillingness of software developers to actually practice reuse, and to assert that,

despite advances in supporting technology, little significant reuse occurs.

This is not true. Significant reuse (with significant savings) occurs:

* every time a real-time system is built on top of an existing operating

system

• every time an information management system includes a Commercial-off-

the-Shelf (COTS) DBMS

• every time a product vendor creates a new version of his product from

parts of the old system

• every time a compiler builder "retargets" his compiler rather than building a

new one from scratch

• every time a system designer draws on design knowledge from a previous

similar system

What makes these cases of reuse successful? How can we learn from these

successes and extend these benefits? Let us consider what they have in common.

First, each focuses on a particular application domain. Each reuses large entities

that perform domain-specific functions. Second, each makes assumptions about the

system architecture. Systems can only, make use of COTS operating systems,

DBMSs, etc., if they are structured' according to'the model iniplemented by the COTS

product. Product vendors must keep major architectures intact to allow reuse of

Domain-Directed Reuse

C. Braun
Conlel
1 of 18

existing parts when making upgrades. Compiler front-ends are reused because the

overall compiler architecture is the same from one compiler to the next. Design is

constrained to fit these architectural assumptions. Finally, each is dependent on

properly generalized and well-defined standard interfaces. Many systems can use

the same operating system or DBMS because the interfaces of these products are

designed to accommodate a variety of needs and are well-understood and well-

documented. Standard interfaces between compiler front-ends and back-ends allow

reuse of these major components.

We believe that these successes can be extended by following the same model --

focusing on specific domains, developing standard architectures to direct and

constrain designs toward the use of common components, and specifying standard

interfaces to make reuse of these components" possible. Contel's reuse project is

taking such an approach, concentrating initially on the C3I domain.

How can domain knowledge be incorporated in a reuse system?

Reuse researchers generally classify approaches to reuse as either compositional or

generative. Compositional approaches support the bottom-up development of

systems from a library of available lower-level components. Much work has been

devoted to classification and retrieval technology, and to the development of retrieval

systems to support this process. These systems are useful but do not meet our

requirement for Domain-Directed Reuse.

Generative approaches are closer to what we are looking for. These are domain-

specific; they adopt a standard domain architecture model and standard interfaces for

the components. Their goal, however, is to automatically generate the new system

from an appropriate specification of its parameters. Such systems can be immensely

effective within particular narrow domains, but clearly their scope is limited. It is not

realistic, at least with near-term technology, to imagine the completely automatic

generation of real-rime defense systems.

What is possible today is an approach that combines the two. We can draw on the

domain analysis work that forms that basis for the generative approach, developing a

standard domain architecture model and standard interfaces. We can then build an

interactive system, as a "superstructure" on top of a general-purpose retrieval

system like those that c urre_nflyexist, that directs the designer through this

architecture in the generation of the system. In effect, this is a generative approach

that uses the human engineer as the generator, directing and constraining his choices

to achieve the maximum reuse of available architecture components. Unlike the

automatic generation approach, it allows human judgement and choice at each step,

and recognizes the unlikelihood of developing the entire system from available parts.

Its flexibility makes it applicable to most domains.

We envision a graphic user interface based on a representation of a standard domain

architecture. This might, for example, provide ahierarchical breakdown of the

architecture. The designer will initially be presented a top-level diagram showing the

Domain-Directed Reuse

C. Braun

Contel

2 of 18

R

g

II

I

I

IR

I

What

decomposition of the system into major subsystems. Pointing to the subsystem he

wishes to work on, he will be given a display of the next-level decomposition, and so

on. At any level in this process, the entity selected by the designer may be

implemented by one or more components in the repository, and he will then step into

the component selection process supported by the repository. Alternatively, he may

ask for a further decomposition of the entity. For example, the designer of a C3I

system may initially select "Man-Machine Interface" as the area he wishes to

design. The repository may have multiple Man-Machine Interfaces to offer the

designer:- e.g. a fill-in-the-blanks forms interface and a menu-and-mouse

interface. The user may select one of these or, deciding that neither meets his needs,

he may ask for a next-level decomposition of Man-Machine Interface. At that level,

he may decide to use a windowing package available in the repository. At each step,

the components offered will conform to a standard interface definition adopted for the

domain architecture model. Stepping through the hierarchy in this way directs the

overall structure of the design so that it makes the maximum reuse of available parts,

at the same time allowing the designer the discretion to substitute his own code

whenever appropriate.

have we done so far?

Our approach to developing a domain-directed C3I reuse system has two threads --

domain analysis and retrieval system development. The domain analysis activity is

focused on analyzing Contel's various ongoing C3I programs and identifying future

business and technical directions, to identify common structures, functions, and areas

of potential standardization. In this work, we interact heavily with the company's C3I

"domain experts". We have currently completed a top-level domain study surveying

the C3I area at Contel and setting forth our objectives for the more detailed domain

analysis. A full analysis, resulting in a generic system architecture, interface

definitions, and a component classification scheme, will be completed early next year.

Because C3I is only of the domains we wish to support, we will develop the C3I

retrieval system by building a domain-specific superstructure on top of a general

baseline system. (In other words, we want to maximize reuse in building our reuse

systems!) We have currently completed an initial baseline retrieval system; a second

increment with a much improved user interface will be completed this year. Next year

we will design and prototype the domain-specific user interface, based on the results

of the domain analysis activity, and will work with the (23I business groups to develop

the necessary "building block" components to stock the repository. Contel's C3I

projects are already working with our initial system; they will adopt these new

products as they become available and provide feedback that allows us to continue to

improve our reuse capability.

Domain-Directed Reuse

C. Braun
Contel"

3 of 18

What benefits can be expected?

Perhaps the best example of a fieldin which such a domain-based reusc modcl is

already applied is compiler development. The existence of standard architectures and

interfaces has made reuse the accepted practice. One Ada compiler vendor estimated

that his organization had produced over 5 million lines of code in distinct compiler and

tool products with approximately 100 man-years of labor -- a productivity rate of

50,000 lines of code per man-year. This is 10-20 times the usual programmer

productivity estimate; clearly it was achieved because most of the software in later

products was reused from earlier ones.

Such gains will not occur overnight in other fields; reuse via standard architectures

has been accepted practice in the compiler field since its infancy. However, we

believe that similar models are possible in other fields, and that comparable benefits

can be achieved. The compiler field does not need a directed design tool to encourage

and enforce use of standard architectures; no one would think of doing otherwise.

However, in other fields, the hardest job will be changing, disciplining, and

constraining ongoing design practices. The system we envision will do this easily

and conveniently, improving productivity from the start and thus overcoming user

resistance.

i

i

I

Ii

w

Domain-Directed Reuse C. Braun

Contei
__ 4 of' 18

It

L
IB

f
!

VIEWGRAPH MATERIALS

FOR THE

C. BRAUN PRESENTATION

5794

i

i

E
,it.

Ii

I

E
i

@

0

,,C ,,e,,,,

I,.- {,.)
@

luun

Ilddl
!1,,,,,
iHllli
Illilli

0
qWP

= -_

e,l

.,<

C. Braun
Contel
5of 18

o

0 L "_ ..

IIIliit

) . •,lll:l •

C. Braun

Contel

6 of 18

i

_z

w

I

i

|

_o
01.

nun
Ildgl
ii!!!11

.!!111
IIIim

O
q_P

0

C
.--03(05

_'E

0

.C 0 ,I0

0
w m _o
-_ _oo
0 .-,
IE ..,0

+- ._o_ +.-Q.

+.p,.p..+

%

C. Braun
Contel
7 of 18

o
Oi..

0 '-
4) O)

Jlllll
I!!lill
IIIilll

il{ill_

lJllllll

iii
C)
Z

u. "_

_ _ _ _

_ _. = _ _ _
.. _

0: _: _ __

I I I J I I

C. Braun
Conlel
8 of 18

i

U

IIIIIII

_!!lllf
llllilt

il{',:l_

li_l

0
=i
=!
0
0

=
em

z _ ._
I"

"_ _ _._

__ I "-__-_ _ ._ ,= _ ..

_ . _ , _ , ,

C. Braun

Contel

9of 18

i

,.....4

__0
0,..

ill,,,,,
U!!llll
llllul

@
ql_nilP

el

unmmn4

o. _ _ _

e ._ _ o

C. Braun

Contel

10 of 18

s..

s_

E

tim

MM

w

i

i

E
I

|

z_ _ _ _= "
" = _

_o __. _._,_ _ _ _
o,_ _ _ _ _ _ _

:___ __'__ _

I1,,,,, _ _ ° _' _ _ _
IIIItlt ' ' ' '

)411::i • •
q;n_lP

t

C. Braun

Contel

11 of 18

C. Braun
Contel
12 of 18

_tm

w

w

=

|

E
zm

|

|
|

O)

0

o

mn
IIJl_ll

I!!lJll
IIIllil

I-,

0
W
I1:
m

0

0

C. Braun
Contel
13 of 18

C.Braun
Conlel
14of 18

m

m

w

|

E

I

-=

0
a_au

(1)
e_ ,,0,.,
OC

I-,-_
®

mmN
Ilil_ll
!!,,,,,
u!!!ili
IIIluli

qll:llJ
tK_Ip

iT ++
rv"

!--
0
LU

Cb
rr'

m

/

r_
LU

LU

!
.,.,..q

"",,,I
i

1,,,.

C. Braun

Contel

15 of 18

t_

o
O,_.

,,,C ,,I,,-
t,,) C

I,,-_
®

mll
Mfl

I!!llli
Iililli

411111

ILl

C)
0,,

C)

(.)

U.

i

Z
<C

W

<1:

W

I

i

C. Braun
Contel
16 of 18

I,.

J

II

|

i

C. Braun

Contel

17 of 18

co}

|

,,= ,,= ,,_

mull _. _= "-= "_ -" .=== =_ o -
IIiSII ._ _ e _= ._ __--=
I1,,,,, = " "= _ _ _ _ _
,,,,,,, _ _ !_i_ II II l | |

IIIiill

ql_lP

C. Braun

ConteI

18 of 18

m_

i

i

II

!

i

li

i

USING REVERSE ENGINEERING AND HYPERTEXT

TO DOCUMENT AN Ada LANGUAGE SYSTEM

Presentation to

NASA Software Engineering Workshop

November 29, 1989

by Kent Thackrey

Planning Analysis Corporation

I010 N. Glebe Rd. Suite 890

Arlington, VA 22201

(703)-276-1250

K. Thackrey
Plannin$ Analysis Corp.
I of 23

THE PROBLEM

The Planning Analysis Corporation Ada Group Enterprise (PACAGE)

provides a comprehensive set of Ada language services. One of our
DOD clients had a personnel/manpower information system (an

administrative system as opposed to a real-time or embedded system)

which was written in EDL language for the IBM Series 1 computer.

The client converted the system to Ada by translating instruction

by instruction. This means that there was no Ada system

engineering. This also means that there was no design or program
documentation for the converted system, other than the code

listings.

The new Ada system, on an IBM compatible PC, consisted of about

650 modules; a module is generally a function or procedure. There

were approximately 40,000 lines of Ada code; each carriage return

counting as a line.

PACAGE was asked to produce the design and program documentation

in paper form. It was estimated that there would be about 2500
sheets of paper. Such documentation in paper form would have been

laborious to produce, difficult to access, and probably would not
be maintained.

SOLUTION

We recommended instead that PACAGE automate the documentation

process as much as possible and produce on-line documentation

instead of paper.

Our process consisted of two stages:

I. Reverse engineering the Ada code to produce documentation,

using a partially automated process.

2. Developing an on-line documentation workbench using

hypertext.

H_vDertexl"..

There are several ways to access information. If we read a book

from front to back, for example, we access the information

sequentially. The drawback with this method is that sometimes we
have questions about the material that are answered later in the
text and it is difficult to track down answers and still maintain

continuity in what we are reading.

On-line information retrieval systems typically use a menu

structure to organize the information systematically and to allow
the user to retrieve it. To view information on a branch other

than the current branch of the tree structure, we have to work back

through the main menu. This also makes it difficult to maintain

K. Thackrey

Planning Analysis Corp.
2 of 23

It

z

our train of thought if there is much information.

Hypertext organizes the information using a network system.

Typically, a hypertext system is developed hierarchally, like the

typical multi-layered menu system, but it allows the viewer to go
directly from any node to any other node on any branch. A

programmer investigating a module can use the documentation

workbench, for example, to

- Read the module description

- Examine its screen layouts

- Read the module description of a calling routine or called
routine

- View the source code

- Look up data elements in the data dictionary

Most of the transitions between these interdependent information

sources are made with single keystrokes, following pre-established
links. This allows us to access information following our normal

thought patterns.

Other hypertext features allow the viewer to retrace his steps or

return directly to the main menu, to mark a piece of documentation

for future reference (viewing, saving, or printing), and to search

the documentation for any string.

The Process

Figure 1 shows what information was included in our documentation

workbench and how it was linked and accessed.

A four step process was used to reverse engineer the code to create
the documentation:

i. A call tree was created by manually examining the code.
The call tree was then documented on-line using the Houdini

hypertext software. The call tree shows graphically which modules
call which other modules.

2. A code parsing program was written in PROLOG to examine
the code and store information about the modules in a database.

This information consisted of a list of which modules called and

were called by a given module, the calling statement format, a

description of the input and output parameters, the location of
spec and body code, record and screen information, and other data.

3. A sheli generation program was written in PROLOG to take

the module information from the database and generate most of the

on-line documentation within the Houdini hypertext call tree
structure.

4. The source code was examined again manuaily to extract

information that the code parser could not. This included

information such as a purpose statement for each module and a

K. Thackrey
Planning Analysis Corp.
3 of 23

J_

___ ° %
ul

o ___
0";- --

LLI •

0
0

0

0

am

._1

0

¢1

e_

0
X

¢II

0

a:O

_ o,--
:_-,0

_ 2 2
oF__.F__
h_, ell
:8

1"4

K. Thackrey

Planning Analysis Corp.

4 of 23

|

m

description of the global variables that were used.

This information was pulled together in an easy to use, on-line
workbench.

THE RBBULTB

Approximately 2500 man hours were spent on this project. Of this,

25 percent was spent on analysis, 25 percent putting together the

hypertext structure, 30 percent pulling all of the text together,

and 20 percent on reviewing, testing, and implementing the
workbench.

The overall results of the project have been very positive_

- The on-line documentation was accepted as meeting the

requirements of the DOD client.

- There have been no requests to provide paper documentation
since the workbench was implemented.

- Users report that the system is easy to use and, at least

initially, there has been significant use.

In future versions we recommend that improvements be made to

facilitate maintenance. Our client has made significant changes
to the personnel/manpower information system without adequately

maintaining the documentation workbench. As a result, usage has

dropped recently. We recommend with future versions that:

-A list of called by and called from information be removed

from the module descriptions because it is difficult to

maintain and can be accessed through the call tree.

- The client receive more hypertext training so they are

proficient at makingchanges. Although not a lot of expertise
is required to maintain a hypertext system, there should be
some.

FUTURE DIRECTION8 - THE IDEAL DOCUMENTATION WORKBENCH

Based on our experiences with this documentation workbench, we have

developed some plans for future workbenches. The ideal

documentation workbench would serve two purposes:

- To facilitate SYSTEM MAINTENANCE

- To facilitate REUSE

We make the assumption that the workbench will be used by people

with average technical ability and with no prior knowledge of the

application.

Maintenance Documentation

K. Thackrey
Planning Analysis Corp.
5 of 23

The purpose of the maintenance documentation included in the
workbench is to:

- Make it easy for designer/analysts to design code changes

properly.

- Make it easy for designer/analysts to assess the impact of

a change on other parts of the system.

- Make it easy for programmer/analysts to quickly locate and

fix bugs in the system.

Ideally, for new systems, this workbench will be developed as

a by-product of the system development process with minimal
additional effort. It will contain only that documentation that

is necessary for maintenance of the system, and not contain

documentation that is for development purposes only. Organizations

vary on what documentation they consider necessary for maintenance,
but to be included in the workbench it must be documentation that

will be maintained as the system is maintained. This means that

documentation changes should be a by-product of the normal
maintenance effort with minimal addi_ionai effort.

Reuse Documentation

The purpose of the reuse documentation that we include in our

documentation workbench is to provide information in a form and
format that can be easily transported to a reuse library where:

- It will be available for other applications.

- Appropriate search mechanisms are available to effectively
locate and investigate modules.

- Appropriate metric gathering mechanisms are available to
track the usage of the modules.

- Code and documentation can easily be transported to new

applications.

All modules that are part of our new application will be documented
in our documentation workbench. A subset of these will be

identified during the system development process as candidates for
reuse and have additional documentation included for them in the

workbench. As with the maintenance documentation, most reuse

documentation should be generated as a by-product of the system

development process with minimal addition effort.

$amDle WOrkbench

Based on this criteria for maintenance and reuse documentation, we

have designed a sample documentation workbench. Figure 2 shows how

this sample workbench would be structured and linked together.

K. Thackrcy

Planning Analysis Corp.

6 of 23

|

J

J

|

z

i

|

i

_=

1"4

K. Thackrey
Planning Analysis Corp.
7 of 23

Each box represents a separate hypertext structure where there will
be internal links between pieces of information in addition to the

external links shown in the chart.

Good hypertext systems have a visible structure to them. It would

be possible to establish many more links between the pieces of
information shown in the chart, but a logical structure is

important to avoid spaghetti hypertext, just like we avoid

spaghetti code in computer programs. This makes it easy for the
viewer to understand and for the technician to maintain. In this

case, we are using the call tree as the focal point for all of the
links.

This is a sample of the steps that would be involved in developing
this workbench for an MIS type system. These steps would normally

be embedded in the system development methodology and have been

extracted here to illustrate the process:

I.

2.

3.
4.

.

.

7.

8.

.

i0.

11.

12.

13.

Develop data dictionary.
Develop CSCI decomposition chart in hypertext.

Develop screen layouts, report layouts, and other I/O layouts.

Develop screen control flow in hypertext;
establish links from screen control flow to screen layouts.

Develop call tree and module description shells in hypertext;
establish links from call tree to CSCI chart, module

description shells and to screen, report, and I/O layouts.
Develop reuse shells in hypertext for reuse candidates;
establish links from reuse shells to module descriptions.

Fill module description information and reuse description
information into the shells.

Develop global variable list, error message list, and package

list;
establish links from call tree to these and to the data

dictionary.

Establish compilation order;

establish link from compilation order to the call tree.

Develop code;
establish link from code to call tree.

During informal testing, capture code analysis data and enter
into reuse shell.

During stress testing, capture performance data and enter into
reuse shell.

At implementation, port hypertext documentation for reusable
modules to reusable library.

i

g

i

m

I

i

w

The documentation workbench, of course, would be customized for

each organization. The steps necessary to create it would be
customized and mapped onto the organization's system development

methodology.

THE BENEFITS

There are several benefits to developing a hypertext documentation

workbendh similar to the sample here:

K. Thackrey
Planning Analysis Corp.
8 of 23

!

The system is easier to Understand and maintain. A good hypertext

structure makes it easier to navigate through the information in

a logical manner. In addition, a workbench like the one in this

example forces a structure on the code that will make the code
easier to maintain. By linking the data dictionary element to the
module in the call tree where it is edited, we are requiring that

the element be edited in only one module. This is good programming

practice and the workbench structure will enforce it. Similarly,
we can force that a individual screen be generated in only one

place, a generic error message be displayed from only one place,
or a data element be updated from only one place. If we do this,
then we can use the call tree to track down every place that the

screen, error message, or data element update is generated.

Provides easily accessible reuse documentation. All of the modules

that are candidates for reuse will be available for reuse on the

application being developed through the documentation workbench.
Later they will be available for reuse on other applications

through the reuse library. The hypertext links will make it easier
to examine all of the reuse documentation associated with a module.

Also, hypertext has a mark and save feature and a memory residence
feature. Conceivably, a programmer in a text editor could press

a hot key to activate the hypertext memory residence feature and

thereby enter the reuse library. After examining the reuse
documentation and selecting a code module, the programmer could use

the mark and save feature to save the selected piece of code to a

file and then import it into the text editor for use on the current

application.

Facilitates reuse analysis. The hypertext structure in the

documentation workbench provides some guidelines to use when

deciding if a code module is a reuse candidate. For example, if
the code module has links to a screen layout, a report layout, or

to a global variable, it probably is not a good candidate. If
there is a link from a data element to an edit routine, that

routine may not be a good candidate, but the routine it calls may

be. For example, a routine to validate a termination date probably

has some application-specific edit checks, but the generic date

routine it calls probably is a good reuse candidate.

Improves the development process. In addition to forcing a useful

structure on the code, we have also forced a structure on the

development process. For example, hypertext provides built-in
traceability. If it is not clear where to establish a link or if

there is no place to tie down a link, then we probably need to make

improvements to the system. Hypertext has been used, for example,
to link a system design to its requirements.

Provides more easily maintainable documentation.

documentation in the workbench is:

Most of the

l) Dynamic in the sense t_at when it is changed the workbench

is automatically updated. By linking to the actual source

K. Thackrey
Planning Analysis Corp.
9 of 23

code, for example, a code change is automatically reflected
in the workbench.

or

2) Redline documentation in that the designer/analyst would

normally mark it to communicate to the programmer what changes

are to be made. It will take minimal effort to change an on-

line screen layout or report layout from a redlined copy.

or

3) Producible through an automated reverse engineering

process. It would be straightforward to write a code parser
to generate the call tree from the Ada code. The global

variable list and most of the module description information

could also be generated from a code parsing program. If

significant changes are made much of the revised documentation

could be generated automatically.

SUMMARY

Hypertext is deceptive in that the concept is very simple, but its

uses are many and its impact can be significant. Each hypertext

application tends to generate ideas for bigger and better Uses the
next time. Some work is being done now uslng hypertext to develop

system documentation and reuse documentation, but our industry is

just getting its feet wet with hypertext compared to where it will
be in the not too distant future.

|
|

|

|

w

D

K. Thackrey
Planning Analysis Corp.
10 of 23

!

|

t

VIEWGRAPH MATERIALS

FOR THE

K. THACKREY PRESENTATION

5794

i

i

I

qI1

i

1
I

I
!

O

W
I--
CO

O9

O.
0
t-
t,o

0
0
t7

z
0

0

m

K. Thackrey
Planning Analysis Corp.
11 of 23

0
Z
L_

L_

(D
Q.

0

0
0
_J

0
0

0 0_ "_

0 -_ o

>.,

o o

I I I "_

K. Thackrey

Plannin$ Analysis Corp.
12 of 23

w

i
!
i

=

lit
!
|

1
1It

X
LLI
I--
CC
LU

>.
"r"

K. Thackrey
Planning Analysis Corp.
13 of 23

K. Thack.rey
Planning Analysis Corp.
14 of 23

¢..
ii

I

K. Thackrey

Planning Analysis Corp.
15 of 23

K.Thackrey
PlanningAnalysisCorp.
16of '_3

I !

O

0

K. Thackrey
Planning Analysis Corp.
17 of 23

I I I I I I

(b
K. Thackrey
Plannin$ Analysis Corp.
18 of 23

K. Thackrey

Planning Analysis Corp.
19 of 23

0

0

E OI
0
0

I

K. Thackrey

Planning Analysis Corp.
20 of 23

K. Thackrey

Planning Analysis Corp.
21 of 23

K. Thackrey

P|anning Armlysis Corp.

22 of 2_

|

_: _ _ o_ =

I I I I I

K. Thackrey

Planning Analysis Corp.
23 of 23

I

SESSION 4 -- TESTING AND ERROR ANALYSIS

R. W. Selby, University of California, Irvine

M. Bush, JPL

M. Hecht, SoHaR, Inc.

5794

Classification Tree Analysis Using the

Amadeus Measurement and Empirical

Analysis System

Richard W. Selby,

Greg James,

Kent Madsen,

Joan Mahoney,

Adam A. Porter, and

Douglas C. Schmidt

Department of Information and Computer Science 1

University of California

Irvine, California 92717

(714) 856-6326

selby@ics.uci.edu

1This work was supported in part by the National Science Foundation under grant

CCR-8704311 with cooperation from the Defense Advanced Research Projects Agency

under Arpa order 6108, program code 7T10; National Aeronautics and Space Adminis-

tration under grant NSG-5123; National Science Foundation under grant DCR-8521398;

University of California under the MICRO program; Hughes Aircraft Company; and TRW.

R.W. Selby
U.C. Irvine

I of 30

Abstract

Classificationtree analysisisa metric-driven technique that categorizessoftware

components according to theirlikelihoodof having user-specifiedpropertiessuch as

high error-pronenessor high development cost. This paper outlinesa method that

uses classificationtrees as metric integrationmechanisms, enabling the synergistic

use of numerous metrics simultaneously.An extenslve_dation study has been

conducted using NASA projectdata and another isunderway using Hughes project

data. This paper summarizes the empirical resultsfrom using classificationtrees

as predictors of high-risl_software component_ in these environments. Classifica-

tionanalysis,along with other empirically-basedanalysistechniques for large-scale

software, willbe supported in the Amadeus measurement and empirical analysis

system.

R.W. Selby
U.C. lrvine
2 of 30

1 Introduction

The "80:20 rule" constitutes a fundamental principle in software engineering. The
80:20 rule states that approximately 20 percent of a software system is responsible
for 80 percent of its errors and costs. The impact of this rule is especially problem-

atic in large-scale software systems, where it is di$cult to determine the complex
interrelationships among the large numbers of components. The identification of
the high-risk components, i.e. the troublesome 20 percent, provides several benefits
to developers:

• localizes components with low reliability;

• focuses testing efforts;

• focuses re-design and re-implementation efforts; and

• facilitates scheduling, among others.

2 Classification Trees

Classification trees provide an approach for identifying high-risk components [Boe81].

The trees use software metrics [Bas80] to classify components according to their like-
lihood of having certain high-risk properties. Classification trees enable developers
to orchestrate the use of several metrics, and hence, they serve as metric integration

frameworks. Example metrics that may be used in a classification tree are: source

lines, data bindings, cyclomatic complexity, data bindings per 100 source lines, and

number of data objects referenced. A hypothetical tree appears in Figure 1. Devel-

opers can select which high-risk properties interest them. For example, developers

may want to identify those components whose: (a) error rates are likely to be above

30 errors per 1000 source lines; (b) error rates are likely to be below 5 errors per

1000 source lines; (c) total error counts are likely to be above 10; (d) maintenance

costs are likely to require between 25 to 50 person-hours of effort; (e) maintenance

costs are Likely to require between 0 to 10 person-hours of effort; or (f) error counts

of error type X are likely to be above 0 (e.g., X = interface, initialization, control).

Each of these properties define a "target class," which is the set of components

likely to have that property. A classification tree would be generated to classify
components as to whether or not they are in each of these target classes. The
classification trees are automatically generated using data from previous releases

and projects. Classification tree generation is based on a recursive algorithm that

selects metrics that best differentiate between components that are and are not

R.W. Selby
U.C. lrvine

3 of 30

0-3 4-5

0-12 > 12

6-10 > 10

0-18 > 18 Real-time Nonreal-time

0-150 > 150

.+i_= Classifiedas likelyto have errorsof type X

-I= Classifiedas unlikelyto have errorsof type X

Figure I: Example (hypothetical)software metric classificationtree. There isone

metric at each diamond-shaped decision node. Each decisionoutcome corresponds

to a range of possiblemetric values. Leaf nodes indicate whether or not an object

is likelyto have some property, such as high error-proneness or errorsin a certain

class.

2

R.W. Selby
U.C. Irvlne

4 of 30

within a target class [SP88]. A developer wishing to focus resources on high-payoff

areas might use several classification trees in support his analysis process. Figure 2

gives an overview of the generation and use of classification trees.

The metric-based classification tree approach has several benefits.

• Users can specify the target classes of components they want to identify.

• Classification trees are generated automatically using past data.

• The trees are extensible -- new metrics can be added.

• The trees serve as metric integration frameworks Q they use multiple metrics

simultaneously to identify a particular target class, and may incorporate any

metric from all four measurement abstractions: nominal, ordinal, interval, and
ratio.

• Classification trees prioritize data collection efforts and quantify diminishing

marginal returns.

• The tree generation algorithms are calibratable to new projects and environ-

ments using "training sets."

• The tree generation algorithms are applicable to large-scale systems, as op-

posed to being limited to small-scale applications.

3 Empirically-Based Classification Paradigm

An overview of the classification paradigm appears in Figure 2. The paradigm has

been applied in two validation studies using data from NASA [SP88] and Hughes

[SP89]. The three central activities in the paradigm are: (i) data management

and calibration, (ii) classification tree generation, and (iii) analysis and feedback of

newly acquired information to the current project. Note that the process outlined

in Figure 2 is an iterative paradigm. The automated nature of the classification

tree approar.h allows classification trees to be easily built and evaluated at many

points in the lifecycle of an evolving software project, providing frequent feedback

concerning the state of the software product.

R.W. S*eToy
U.C. Irvine

5 of 30

Data Management
an_l

Calibration

Metric

data

Storage

Metric

lkt

!
!
I
!
!
I

Training set

dsta

New metric

dsta

!
I
I
I
!

Figure 2:

Classification
Tree

Generation

Target class

criterla

Target

definition

Remedial

l_-medisl

plans

Analysis
ane

Feedback

Feedback

Corrective

Feedback

Metric

lht

Gener&te

Trees

Trees

project

Current metric

Project dsta

Apply

"II"ecs to

Current

Project

Overview of classification tree approach.

Targeted

components

R.W. Selby
U.C. lrvine

6 of 30

3.1 Classification tree generation

This central activityfocuses on the activitiesnecessary to construct classification

treesand prepare forlateranalysisand feedback. During thisphase the targetclasses

to be characterizedby the treesare defined.Criteriaare establishedto differentiate

between members and non-members of the target classes. For example, a target

classsuch as error-prone modules could be defined as those modules whose total

errorsare in the upper 10 percent relativeto historicaldata. A listof metrics to be

used as candidates for inclusionin the classificationtreesispassed to the historical

data retrievalprocess. A common defaultmetric listisallmetrics for which data is

availablefrom previous releasesmad projects.

Importantly, one must determine the remedial actions to apply to those com-

ponents identifiedas likelyto be members of the target class. For example, ifa

developer wants to identifycomponents likelyto contain a particulartype of error,

then he should prescribe the applicationof testingor analysistechniques that are

designed to detect errorsof that type. Another example of a remedial plan is to

consider redesignor reimplementation of the components. Itisimportant to develop

these plans early in the process rather than apply ad hoc decisions at a later stage.

Metric data from previous releases and projects as well as various calibration pa-

rameters are fed into the classification tree generation algorithms [SP88]. The tree

construction process develops characterizations of components within and outside

the target class based on measurable attributes of past components in those cate-

gories. Classification trees may incorporate metrics capturing component features

and interrelationships, as well as those capturing the process and environment in

which the components were constructed. Collection of the metrics used in the deci-

sion nodes of the classification trees should begin for the components in the current

project. This data is stored for future use and passed, along with the classification

trees, to the analysis and feedback activity.

3.2 Data management and calibration

Data management and calibration activities concentrate on the retention and ma-

nipulation of historical data as well as the tailoring of classification tree parameters

to the current development environment. The tree generation parameters, such as

the sensitivity of the tree termination criteria, need to be calibrated to a particu-

lar environment. For further discussion of generation parameters and examples of

how to calibrate them, see [SP88] and [SP89]. Classification trees are built based

on metric values for a group of previously developed components, which is called a

"training set." Metric values for the training set, as well as those for the current

project, are retained in a persistent storage manager.

R.W. Selby
U.C. Irvine
7 of 30

3.3 Analysis and feedback

In this portion of the paradigm, the information resulting from the classification

tree application is leveraged by the development process. The metric data collected

for components in the current project is fed into the classification trees to identify

components likely to be in the target class. The remedial plans developed earlier

should now be applied to those targeted components. When the remedial plans

are being applied, insights may result regarding new target classes to identify and

further fine tuning of the generation parameters.

4 Validation Studies Using Classification Trees

One validation study has been conducted and another is underway using the clas-

sification tree approach. The goal of the studies was to determine the feasibility of

the approach and to analyze tree accuracy, complexity, and composition. The first

validation study we conducted was using 16 NASA projects (3000-112,000 lines)

[BZM+77] [CMP+82] [SEL82]. A total of 9600 classification trees was automatically

generated and evaluated based on several parameters. On the average, the trees

correctly classified 79.3 percent of the software modules according to whether or not

they were in the target classes (see Figure 3) [SP88]. In a second study, we have

applied the approach in a Hughes maintenance environment to identify fault-prone

and change-prone components in a large-scale system (_100,000 lines) [SP89]. The

use of project data from NASA and Hughes is intended to demonstrate the ap-

plicability of the method to large-scale projects. The classification tree generation

tools are environment independent and are calibrated to particular environments by

measurements of past releases and projects.

Basically, a classification tree is a predictive tool that integrates multiple metrics

to determine whether or not a module is likely to be in a user-specified _target

class." The target classes examined were: cost-prone (NASA only), fault-prone

(both environments), and change-prone (Hughes only). Cost-prone was defined as

having development costs in the uppermost quartile (i.e., top 25 percent) relative

to past data; the definitions were analogous for fault-prone and change-prone. The

goal of a classification tree is to identify the modules on a future project that are

likely to be in a target class.

For complete descriptions of the studies and examples of the classification trees

generated, see [SP88] and [SP89]. The predictive accuracy of the trees in these

two environments is summarized in Figures 3 and 4. The purpose of this analysis

is not to compare or evaluate the environments in any way -- the purpose is to

refine and enhance the classification tree technique and underlying concepts. The

6

R.W. Selby
U.C. Irvine
$ of 30

Target

class

Number

of trees

N

Cost-prone 4800

Fault-prone 4800

All 9600

Accuracy:

overall (%)

Clean[Std.

79.88 14.21

78.75 21.23

79.32 18.07

Figure 3: Classification tree accuracy using metric data from 16 NASA projects.

Target
Cl&SS

Number

of trees

N

Change-prone 10

Fault-prone 10

All 20

Accuracy:

overall (%)

Mean I Std.

89.54 5.86

80.76 14.31

85.15 11.56

Accuracy:

consistency (%)

Mean I Std.

53.12 39.21

81.16 25.91

67.14 35.40

Accuracy:

completeness (%)

Mean t Std.

90.13 12.90

75.68 12.61

r 82.91 14.46.

Figure 4: Classification tree accuracy using metric data from the Hughes project.

7

R.W. Selby

U.C. Irvine

9 of 30

classificationtrees in both enviromnents are relativelyaccurate c-,,erall.Several

measures of accuracy are being examined, including

io Overall accuracy. Percentage of futureproject modules correctlypredicted

by the classificationtree (i.e.,targetclassmodules correctlypredicted as such

and non-target classmodules correctlypredicted as such). (Calculated in both

NASA and Hughes studies.)

. Completeness. Percentage of target class modules in the future project that

were predicted as such by the classification tree. (Calculated in Hughes study

only.)

o Consistency. Percentage of future projectmodules predicted as targetclass

modules by the classificationtree that actually were target class modules.

(Calculated in Hughes study only.)

The overallaccuracy of the classificationtree depends on the targetclassbeing

identified(see Figures 3 and 4). The classificationtrees are more accurate for

identifyingchange-prone filesthan fault-prone filesin the Hughes study (Figure

4). When accuracy is measured in terms of consistency and completeness, the

classificationtreeshave 83 percent completeness and 67 percent consistency(Figure

4). Therefore, the treestend to identifycorrectlymost (83 percent) of the targeted

fries,but they alsoraiseseveralfalsealarms (33 percent of the friespredicted to be

in the target classare not in the target class).Differentenvironments may assign

differentprioritiesto consistency and completeness accuracy measures. Note that

there isnot necessarilya tradeoffbetween the two -- itispossiblefor classification

trees to have both high consistency and high completeness. The trees targeting

change-prone fileswere 90 percent complete, and those targeting,fault-pronefiles

were 81 percent consistent(Figure 4). Based on the Hughes data (Figure 4), when

developers invest additional effortin the modules identifiedas likelyto be fault-

prone, they have relativelyhigh assurance that their resources willbe well spent

(sincethose trees have high consistency).When developers investadditionaleffort

in the filesidentifiedas likelyto be change-prone, they have relativelyhigh assurance

that most of the change-prone fileshave been identified(sincethose treeshave high

completeness).

R.W. Selby
U.C. Irvine
I0 of 30

5 Classification Tree Tools and the Amadeus Sys-

tem

Preliminary tool prototypes have been developed to automatically generate metric-
based classification trees. These tools embody the classification tree generation al-

gorithms and supporting data manipulation capabilities. These tools are prototypes

and should be considered only preliminary versions.
The classification tree tools will become part of the Amadeus system, which is

an automated measurement and empirical analysis system under development at

the University of California at Irvine. Amadeus supports empirically-based anal-

ysis techniques for use in the development and evolution of large-scale software.

Empirically-based techniques use measurements to describe, analyze, and control

software systems and their development processes. These modeling techniques lever-

age past experience and have many desirable properties, including being scalable to

large systems, integratable, and calibratable to new projects. The Amadeus sys-

tem provides capabilities for specifying empirical analyses, collecting the underlying
data, and feeding the results back into the development processes. Amadeus serves

as an extensible integration framework for empirically-based analysis techniques,
and hence, it is a complementary project to the TAME project at the University of

Maryland [BR88]. Amadeus is integrated with and leverages the components in the
Arcadia software environment architecture [TBC+88]. The conceptual architecture

of the Amadeus system appears in Figure 5.

6 Conclusions

This paper has presented an analysis of a software metric classification tree approach

to the problem of localizing fault-prone, cost-prone, and change-prone software com-
ponents. Classification trees have the benefit of being general structures that can

be automatically generated and evaluated and naturally decomposed into a set of

if-then rules. The metric evaluation heuristics can result in relatively rapid con-

struction of the trees, as they did in this analysis, but we do not imply that this is

the case for all heuristics and data sets. The empirical results presented in this study

are intended to provide the basis for analysis of classification tree generation and

evaluation -- it is not implied that there is a direct extrapolation of these results to
other environments and data sets.

Classification trees enable developers to leverage off the use of multiple metrics.

In related metrics work (e.g., [BR.88]), a variety of individual metric collection tools

are being developed, such as tools for data bindings metrics, cyclomatic complex-

9

R. _,V. Selby
U.C. Irvine

11 of 30

Intermediate language
requests directly
generated from

processes a_d tools

">..
Dialog box Interm_liate_.

interactions_. _ language
from humans (IL) messages

Statically
annotated

process programs

Client's Tool K|t

Pro-Active Server

l (L /I C°°rdi"message nation
)nterpretelt[table

Herslstent
store of

historical
metric data

System
Languages

Server's Tool Kit

Active

agents

r" 1

PPI '

Dynamic

agent
inter- pp_

actions /

LJ

IL messages

Server

EC

= Condition-action pairs. Conditions: event-based, object-based, or

time-based. Actions: processes or tools.

= Pro-active server interprets IL requests, delegate s dynamic collection

to individual EC's, and coordinates analysis across multiple EC's.

Server is PPL, UIMS, and OM independent.

= Evaluation component in active agent. EC is PPL, UIMS, and OM

dependent.

Figure 5: Conceptual axchitectureof the Amadeus measurement and empiricalanal-

ysissystem.

I0

R.W. Selby

U.C. lrvine

12 of 30

ity, source lines, change history, and error history. Classification trees provide a

mechanism for integrating the metric data resulting from these tools. An exten-

sive validation study has been conducted using classification trees and another is

underway.

Further research is underway to expand the scope of analysis and to refine the

underlying principles driving the results. The accuracy measures of completeness

and consistency are being applied to the NASA project data. The components that

are chronically misclassified are being characterized in order to guide the defini-

tion of new metrics. The use of project data from NASA and Hughes is intended

to demonstrate the applicability of the method to large-scale projects. The tree

generation tools are environment independent and are calibrated to particular en-

vironments by measurements of past releases and projects. Classification analysis,

along with other empirically-based analysis techniques for large-scale software, will

be supported in the Amadeus measurement and empirical analysis system.

References

[Bas80]

[Boe81]

[BR88]

[BZM+771

[CMP+82]

[SEL82]

V. R. Basili. Tutorial on Models and Metrics for Software Management

and Engineering. IEEE Computer Society, New York, 1980. IEEE Cat-

alog No. EHO-167-7.

B. W. Boehm. Software Engineering Economics. Prentice-Hall, Engle-

wood Cliffs, N J, 1981.

V. R. Basili and H. D. Rombach. The tame project: Towards

improvement-oriented software environments. IEEE Trans. Software

Engr., SE-14(6):758-773, June 1988.

V. R. Basili, M. V. Zelkowitz, F. E. McGarry, Jr. R. W. Reiter,

W. F. Truszkowski, and D. L. Weiss. The software engineering labo-

ratory. Technical Report SEL-77-001, Software Engineering Laboratory,

NASA/Goddard Space Flight Center, Greenbelt, MD, May 1977.

D. N. Card, F. E. McGarry, J. Page, S. Eslinger, and V. R. Basili. The

software engineering laboratory. Technical Report SEL-81-104, Software

Engineering Laboratory, NASA/Goddard Space Flight Center, Green-

belt, MD, Feb. 1982.

SEL. Annotated bibliography of software engineering laboratory

(sel)literature. Technical Report SEL-82-006, Software Engineering Lab-

1I

R.W. Selby
U.C. Irvine
13 of 30

[SP881

[SP89]

[TBC+88]

oratory, NASA/Goddard Space Flight Center, Greenbelt, MD, Nov.

1982.

R. W. Selby and A. A. Porter. Learning from examples: Generation and

evaluation of decision trees for software resource analysis. IEEE Trans.

Software Engr., 14(12):1743-1757, December 1988.

R. W. Selby and A. A. Porter. Software metric classificationtreeshelp

guide the maintenance of large-scalesystems. In Proceedings of the Con-

ference on Software Maintenance, pages 116-123, Miami, FL, October

1989,

Richard N. Taylor, Frank C. Belz, Loft A. Clarke, Leon Osterweil,

Richard W. Selby, Jack C. Wileden, Alexander L. Wolf, and Michal

Young. Foundations for the Arcadia environment architecture.In Pro-

ceedings of ACM SIGSOFT '88: Third Symposium on Software Devel-

opment Environments, pages 1-13, Boston, November 1988. Appeared

as Sigplan Notices 2_ (2) and Software Engineering Notes 15'(5).

12

R.W. Seiby
U.C. lrvine
14 of 30

VIEWGRAPH MATERIALS

FOR THE

R. W. SELBY PRESENTATION

5794

Classification Tree Analysis Using the

Amadeus Measurement and Empirical

Analysis System

Richard Selby, Greg James

Kent Madsen, Joan Mahoney

Adam Porter, and Douglas Schmidt

Department of Computer Science

University of California

Irvine, California 92717

R.W. Selby
U.C. Irvine

15 of 30

Research Vision

Long-term goal: Develop, evaluate, and inte-

grate empirically-based analysis techniques for cat- •

alyzing the development and evolution of large-

scale software i
i

---> Empirically-guided software development

• Research areas:

Em pi ri ca I ly-g u ided process programs

Classification trees as integration

for metrics

mechanisms

-- Interconnectivity analysis methods

Environment components to support measure-

ment and empirical analysis

R.W. Selby
U.C. Irvine

16 of 30

Why Empirically-Based Techniques?

• Scalable to large projects

• Calibratable to new environments

• Measurements are integratable

Leverage previous experience

R.%v. Selby
U.C. Irvine
I? of 50

The Amadeus System

The Arcadia measurement and

system

empirical analysis

=

i

• Integrated with and leverages the components of

the Arcadia software environment architecture

Amadeus provides an extensible integration frame-

work for empirically-based analysis techniques

Amadeus focuses on support for large-scale soft-

ware objects and processes

R.W. Selby
U.C. lrvine

18 of 30

Amadeus Supports Process Maturity

Levels 4 and 5: Managed and

Optimizing Processes (Humphrey)

Imllal

l:leoeatalole

l_ouleS Ivak41Os

ManageO

OefineO

Ol:)lim,zlng

The five levels of process maturity.

ORIGINAL PAGE IS

OF POOR QUALITY

R.W, Selby
U.C. lrvine
19 of 30

Amadeus Major Functional Areas and
Example Capabilities

i.
i

• Definition

Empirical analysis specifier,

metric taxonomy browser

Collection

Event-based, object-based, time-based

mechanisms

Analysis

- Classification tree generator, experimental

design builder, data analysis tools

• Feedback

- Empirical specification generator

R.W. Selby
U.C. lrvlno

20 of 30

Amadeus System

• Client/server separation

• Client "toolkit"

• Server "toolkit"

• Intermediate language (IL)

Evaluation component (EC)

R..W. Selby
U.C. Irvine

21 of 30

Amadeus Environment Components:

Conceptual Model

Intermediate language
requests directly
generated from

processes and tools

. il . il_{ll _ "

fi_ ri!t I_°:n s [i_S t at ica ily ;

annotated

process progra ms

Client's Tool Kit

Pro-Active Server

,m i |, ,,

message nation

lmterpreteq I table

k'erslstent
store of

historical

metric data

System

Languages

Server's Tool Kit

Active

agents

I- "I

' PPI 'I

- '/i
Dynamic I _1--_-_-I

.agent
inter- pp_

t.J

IL messages

Server

EC

= Condition-action pairs. Conditions: event-based, object-based, or

time-based. Actions: processes or tools.

= Pro-active server interprets IL requests, delegates dynamic collection

to individual EC's, and coordinates analysis across multiple EC.'s.

Server is PPL, UIMS, and OM independent.

= Evaluation component in active agent. ECis PPL, UIMS, and OM

dependent.

s

|

R.W. Selby

U.C. Irvine
22 of 30

Metric-Based Classification Trees

• Motivated by the "80:20 rule"

80:20 rule is especially problematic in

systems

large-scale

Goal is to identify the high-risk components,

the "troublesome 20 percent"

i,e, t

• Classification trees use multiple metrics to

tify these components

iden-

Classification trees use metrics to classify com-

ponents according to their likelihood of having

certain high-risk properties

R.W. Selby
U.C. lrvine
23 of 30

Example "Target Classes" to Identify

Components whose:

Error rates are likely to be above 30 errors/KLOC

Error rates are likely to be below 5 errors/KLOC

• Total error counts are likely to be above 10

• Maintenance costs are likely to

25 to 50 person-hours of effort

require between

• Maintenance costs are likely to

0 to 10 person-hours of effort

require between

Error counts of error type X are

0

likely to be above

R.W. Selby
U.C. [rvine
24 of 30

Example Hypothetical Classification
Tree

0-3 4-5

0-12 > 12

6-10 > lO

0-18 > 18 llea/-time

0--1,50 > 150

"+" = Classified _ likely to have errors of tyl_ X

"-" = Classified as unlikely to hzve errors of type X

R.W. Selby
U.C. Irvine
25 of 30

Benefits of Classification Trees

User-specifiable target classes of components to

identify

Trees generated automatically using past data

• Extensible trees new metrics can be added

• Trees serve as integration frameworks for multi-

pie metrics; may incorporate any metric from all

four measurement abstractions

• Trees prioritize data collection efforts

Tree generation algorithms are calibratable to new

proJects and environments

Algorithms applicable to large-scale systems

g.W. Selby
U.C. Irvine
26 of 30

Classification Tree

Accuracy

% Correct (mean)

97.1
/

60.4

/

88.9
/

i

Attribute
Availability all early all

Module total
class faults faults efrort

Std. Dev. 6.72 13.50 6.17

70.9

I

early

total
effort

14.23

• Average of 79.3% (sd = 18.1)
tiffed over all 9600 tree combinations

modules correctly iden-

(79.9%)• Better identification of costly modules VS.

error-prone modules (78.8%) [p <.0003]*

• Better identification using all metrics (93.0%) vs. early

metrics (65.6%)

• Early metrics better for identification of costly modules

g.W. Selby

U.C. lrvine

27 of 30

Preliminary Results

Mean

100%

9O%

80%

70%

6O%

50%

Module
Class

Std.

Accuracy

89.54
80.76

Completeness

90.13

75.68

Chngs Fits Chngs Fits

Dev. 5.86 14.31 12.90 12.61

Consistency

81.16

53.12

J |

Chngs

39.21

Fits

25.91

The classification trees are more accurate for identify-

ing change-prone files than fault-prone files.

The classification trees have 83 percent completeness

and 67 percent consistency

The trees targeting change-prone files were 90 percent

complete,

The trees targeting fault-prone files were 81 percent
consistent.

R.W. Selby

U.C. Irvine

28 of 30

|g

m

o_ml

em

8,=a

em

A=a

=maml

ewml

ORIGINAL PAGE IS R.w. Selby

OF POOR QUALITY u.c. Irvine
29 of 30

Conclusions

Identifying high-risk components (e.g., fault-prone)

benefits development personnel

Automatic generation of metric-based classifica-

tion trees has shown merit in two "proof of con-

cept" studies

Further research on generation algorithms

way

under-

Classification analysis will be supported in the

Arnadeus measurement and empirical analysis sys-

tern

R.W. Selby
U.C. Irvine

30 of 30

ABSTRACT

The Jet Propulsion Laboratory's

Experience with Formal Inspections

Marilyn Bush and John Kelly

Jet Propulsion Laboratory

INTRODUCTION

This paper describes the introduction of software formal

inspections, known in the literature as Fagan Inspections, to the

Jet Propulsion Laboratory by the JPL Software Product Assurance

Section. It briefly describes the nature of the inspections,

indicates the way they altered JPL practice, characterizes their

present status at JPL, and evaluates their initial impact.

WHy SOFTWARE pRODUCT ASSURANCE INTRODUCED FORMAL INSPECTIONS

The Jet Propulsion Laboratory(JPL), a division of the

California Institute of Technology, is responsible to NASA for

conducting scientific investigations of the solar system using

automated spacecraft. Since the early 1980's JPL has been

concerned about the way it manages and develops software systems.

At that time, several JPL software systems were experiencing

difficulty, even as it was becoming evident that such systems would

become a larger part of NASA's future. By the mid 1980's software
has the focus of about 50% of JPL's work hours. By the year 2000,

some estimates show software efforts rising to as much as 80%.

Software problems are especially important to NASA because critical

flight software must be error free.

SPA soon learned that spending a little money to find and fix

defects early in the development life cycle saves a lot of money

later. One study, for example, estimates that $i00 spent to find

and fix a defect during the requirements phase saves $I0,000 to

find and fix the same defect in the operations phase.

In surveying what worked best in the most efficient software

operations around the country, it was determined that the most

cost-effective early defect detection technique was "Fagan

Inspections."

Formal Inspections were originated at IBM by Michael Fagan,

1976. Formal Inspections represent a defect detection, removal,

and correction verification process carried out during the pretest

phases of the development lifecycle. Formal inspections were found

M. Bush
JPL
1 of 17

to be very effective at ensuring that documents and code are

logically correct, complete, clear, reliable and consistent.

Since 1976, Formal Inspections have spread widely throughout

IBM, then to other leading software producing organizations. The

Software Engineering Institute recommends the use of formal

inspections for enhancing developers' capability to consistently

produce high quality software. JPL's Software Product Assurance

Section has been aggressive in implementing the inspection process

on several projects.

WHAT FORMAL INSPECTIONS ARE

Formal Inspections are a seven-step process to find, fix, and

document defects early in the development cycle. The steps are

planning, overview, preparation, inspection meeting, third-hour,

rework, and follow-up. The inspection team consists of a trained

moderator and peers (3-6 people), with defined roles, representing

areas of the project affected by material being inspected. No

managers are present in the actual inspection meeting that last no

more than two hours. Inspections are carried out within designated

phases of the software life cycle. At JPL, the phases include

System Requirements, Subsystem Requirements, Functional Design,

Software Requirements, Architectural Design, Detailed Design,

Source Code, Test Plan, and Test Procedures.

Checklists of tailored questions are used to identify defects.

Statistics on the number of defects, types of defects, and time

expended on inspections are kept. Defects are categorized as MAJOR

(which must be fixed immediately) and MINOR (which are fixed at the

discretion of the project). Major defects, if they were allowed

to remain, would result in the system not operating as required.

HOW FORMAL INSPECTIONS WERE INTRODUCED AT JPL

SPA introduced the idea of Formal Inspections to JPL by both

training managers in the value of inspections, and at the same time

training developers in using inspections. We spent six months

developing two training courses: one for developers and one for

managers. The 12-hour developer course (which includ ; moderator

training) was completed in February 1988. The two-hour manager"

course was developed in June 1988. Moderators not only take the

12-hour developer course, but are observed during their first two

inspections. There are also monthly moderator meetings. As of

September 1989, thirteen "manager" and 20 "developer" classes have

been held, involving 175 managers and 288 technical staff, making

a total of 463 trained JPL people.

2

M. Bush

JPL

2 of 17

We found after conducting 171 inspections that JPL's averages

per inspection were as follows:

Major Defects found 3.6

Minor Defects found 12.2

Total Staff hours 27.6

Pages inspected

(over the 2 hr meeting) 37.7

The number of participants involved in an inspection did not

appear to significantly increase the number of defects found (the

teams ranged in size from 3 to 6). This means that inspection

teams of 3 may be viable for code inspections. A significant

preliminary discovery was that code audits were not nearly as

effective at finding defects as code inspections. Even though code

inspections uncovered fewer defects than design inspections, the

audits found even fewer defects (one-third fewer).

All of the types of inspections tried indicate that Formal

Inspections are a cost effective means of improving quality early

in a project's life cycle. The average number of work hours needed

to find, fix and verify the correction of a defect (major and minor

combined) ranged from 1.4 to 1.8 hours.

3

M. Bush
JPL
3 of 17

I

|

VIEWGRAPH MATERIALS

FOR THE

M. BUSH PRESENTATION

5794

l

M. Bush

JPL

4 of 17

0

I I II ill

i

M. Bush

JPL

$ of 17

Ill

f

M. Bush

JPL

6 of 17

I | I I I III

M. Bush

JPL

7 of 17

M. Bush

JPL

8 of 17

III

M. Bush

JPL

9 of 17

IIll I

M. Bush

JPL

10 of 17

M. Bush

JPL,

11 of 17

o

M. Bush

JPL

12 of 17

¢1

..

Illl I I

M. Bush

JPL
13 of 17

II

M. Bush

JPL
14 of 17

!
+--m 8

I ' ' I ' ' I ' ' I ' ' I ' ' I

i°
0 0

0

_ 0

00

0

0

0 O

0 0 • 0 II0

_ •
tl, • ,

• • -'0 1

• o _• _0 06_0 0 °0_ t
"* 'S"%° o8 0%00°

_s 00
S <+"o%0

o o o o_.._ jp °

• Ot
4>0 •

4_ 0

0

1

++!

 +jt"
0

I I I I I _ ,_ L ,o
I I I I I I I I I i I

o_ _o _ o o o o 1
pu'no,tI s'4oo_:(l jo zeqmnq t

)
F(i I1 [Jl

M. Bush

JPL

15 of 17

M. Bush

JPL

16 of I?

M. Bush
JPL
17 of 17

THE ENHANCED CONDITION TABLE METHODOLOGY FOR VERIFICATION OF

FAULT TOLERANT AND OTHER CRITICAL SOFTWARE

M. Hecht, K.S. Tso, and S. Hochhauser

SoHaR Incorporated
8500 Wilshire, Suite 1027, Beverly Hills, CA

(213) 855-2595

90211

1 Background and Motivation

Over the past decade, research on software fault tolerance has gained in importance as
critical applications have become more software intensive. As work in fault tolerant

software moves from research to application, verification will emerge as a critical issue.
Fault tolerant systems have non-redundant components because the decision on a

reconfiguration action must be taken at one point. These non-redundant components must
be subject to an especially intensive verification. This paper and the accompanying
viewgraphs describe a test-based methodology developed for this purpose.

Usual structural testing techniques such as path or branch testing are inadequate for such
software, and other methods must be developed. The work described in this paper and

the accompanying viewgraphs investigated enhancement of a verification methodology
based on work performed by J. Goodenough and S. Gerhart based on condition tables
[GOOD75]. Their method required testing not only all paths through the software, but

all feasible combinations of conditions. The distinction between path testing and condition
table testing is that in the former, the completion criterion is that all feasible paths are

traversed at least once; in the latter, paths will be traversed many times with significantly
different data. As a result of multiple traversals, it is more likely that coding errors such

as incorrect conditions (e.g., IF A>B rather than if A > B), incorrect operations (e.g.,
A=B+C instead of A=B*C), or missing branches (e.g., check for a'value not being zero
before dividing) will be detected.

The difficulties with the method is that it is excessively labor intensive. The effort to

develop condition tables and test cases can be more than an order of magnitude greater
than that required to develop the software undergoing test. Thus, it is impractical for full
scale software development projects. Our objective was to enhance the methodology so
that it applied to a realistic example: 1500 lines of code which comprise the kernel of a
distributed fault tolerant system being developed for advanced nuclear reactor control

under a contract to the Department of Energy. The enhancements that were developed
include:

Automated tools to generate the condition table

An analysis format called the Test Case Enhancement Analysis (TCEA) for

developing additional test cases which have functional, reliability, or safety

M. Hecht

SoHaR, Inc.
"1 of 30

significance

Implementation rules which simplify the generation of condition tables, test
cases, and the creation of a test environment

2 Methodology Description

The steps for developing an enhanced condition table are:

1. Develop a condition table based on the code

.

.

o

Develop additional test case specifications by resolving "don't care" conditions
into test cases which relate to specific functional, safety, or reliability concerns

Define test cases which satisfy the specifications developed in the first two

steps

Create the test environment, run the tests and analyze the results.

Viewgraph 6 shows a simple code segment for managing a fault tolerant system consisting

of two nodes, designated nodel and node2. If the outputs of the two nodes agree, then
no further processing occurs. However, if there is disagreemen t between the nodes, then
the first node is checked. If the ch_eck function returns a value of not OK (i.e., the node
has failed the check), then the fail nodel variable is set to Ti_UE. If the check fuii&ion
returns a value of OK (i.e., the node has passed the check), then the second node is

checked. If the second node check value is OK, then a retry function is invoked.
However, if the check indicates a failure, then the fail_node2 variable is set to TRUE. If
either of the two nodes have failed, then a reconfiguration function is invoked.

The resultant condition table is shown on the same viewgraph. The predicates from the
4 conditions are shown in the left hand column. The feasible combination of these

predicates, called "rules", are shown in the 4 succeeding columns. The notation is as

follows: y: condition set true; n: condition set false; (y) condition is necessarily true
because of the state of other conditions; (n) condition is necessarily false; and -: irrelevant
or "Don't Care". This format is an adaptation of the limited entry condition table first

proposed by King [KING69].

The "Don't Care" conditions are the ones of concern in the condition table methodology.
Under the Goodenough and Gerhart approach, the right-most column of the table would
have to be decomposed into 8 (23) additional rules for which test cases would have to be

written. The ECT approach instead requires that the analyst consider significant failure
modes of the module using a format called the Test Case Enhancement Analysis (TCEA)

shown in Viewgraph 7. The TCEA shows that only one additional case needs to be run:
that the two nodes should agree and that they should be failed. This rule uncovers a

significant flaw in the routine because such a case is not properly handled. Instead
ordering a reconfiguration, the implementation of this module results in no action at all.

2

M. He¢ht

SoHaR, Inc.
2 of 30

3 Tools Development

The tools development objective was addressed by the creation of two separate programs
called ECT and SEM. The ECT program performs the following operations:

I* Lexical analysis that assembles terminal symbols (e.g., carriage return/line
feed) and eliminates white space and comments

. Syntactic analysis that parses C programs and detects grammatical errors
based on the ANSI C language standard

3. Generation of a condition tree

4. Generation of a condition table from the condition tree.

The condition table generated by the ECT program is syntactically and structurally correct

but contains many semantically infeasible rules. The second program, SEM, reduces the
condition table generated by ECT based on an input file which contains the semantics of
the C program.

Semantic information is input to the SEM program by means of an ASCII file using the
following notation:

& AND

I OR
! NOT

-> Implies that
- Don't Care

For the code segment shown in viewgraph 6, the semantics are

!c2] Ic3-> c4 (if the check on node 1 or node 2 is OK, then the node can not
have failed).

The ECT and SEM tools decompose multiple conditions into unary conditions and
generates tables based on the relationships of the multiple conditions. That is, a condition
based on two predicates, e.g., if (a<b) and (c<d), becomes two conditions using the ECT
and SEM programs; under the original approach, they would be regarded as a single

condition. A second enhancement is that case and while statements are handled by the
ECT and SEM programs whereas the original work dealt only with if-then-else constructs.

ECT and SEM were implemented in C on a Sun 280 computer running SUNOS (UNIX
4.2 BSD), release 3.5. Figures I and 2 shows the top level structure of these programs;
the parsing and lexical analysis portions were generated using the UNIX yacc and lex
programs.

3

M. Hecht

SoHaR, Inc.

3 of 30

o

II_ol_

Io
8p

_n

'-/c,_

i|

o I

i

/

°..°°°

/

ru

X
§

!
W°is

w L

i

II

15
"°'',

t ,

Figure 1. ECT Program Top Level Structure

M. Hecht

SoHaK, Inc.

4 of 30

N

I

|

l[ll !
..611

qlle_

eL_

lU_ |

I_,l I
I _ 1A I I

S_o

\
'i

1 0

._ ..-_...._t
.o ...:..:--.
J i

Figure 2. SEM Program top level structure

5

M. Hecht

SoHaR, Inc.
5 of 30

4 Feasibility Experiment

The feasibility experiment determined whether the ECT was indeed practical for a

realistically sized critical software system by applying it to a fault tolerant distributed

reactor control system being developed under another contract at SoHaR. The system,
called the Extended Distributed Recovery Block, or EDRB, consists of approximately 2000
lines of ANSI standard C code; 1500 of which were sufficiently stable to warrant

verification. A description of the EDRB system may be found in [HECH89].

Generation of condition tables was performed using the automated tools described above

for all stable portions of the EDRB. The accompanying viewgraphs show an excerpt of

code which is typical of the EDRB and the condition table generated by the ECT and

SEM tools described in the previous section. The rules are listed in a horizontal format

rather than the vertical format shown in the previous section because of the large number

of rules. 700 rules were generated for the 30 modules. No difficulties were experienced

in running the tools. The entire procedure took less than 1 hour, most of which was
related to file transfers.

The next step was generation of the test cases from the rules defined by the condition
table. Due to the 6-month schedule limitation of this Phase 1 SBIR research, only one of

the tasks was chosen for testing. This task, called __EAT, was one of the most

complicated in the EDRB, and is responsible for generating its own heartbeat, monitoring

that of its shadow, and deciding whether to synchronize with its shadow or signal the

system supervisor for a recovery action. A total of 109 test cases were developed for the

routine. Multiple test cases were developed for some rules in order to test special values

(i.e., values at or close to boundaries, discontinuities, etc.). Figure 3 shows two test cases

that were generated for Rule 40. They differ in that the frame counts in one case are 99

and 100 whereas in the second they are 100 and 103. These two different sets of values

test the limits of the behavior of the program in this branch. This approach exemplifies

the combination of structural testing with other forms of testing in order to provide

complete coverage. The fault found using the ECT which was not found using

conventional inspection-based methods was due to a second test case on the 66th rule in
the condition table.

The third step was generation of additional test cases that reflect concerns on the function

of the module. A procedure was developed to generate such test cases and resulted in the
formulation of the Test Case Enhancement Analysis, or TCEA, an excerpt of which is

shown in Viewgraph 6. By using the TCEA, an additional several hundred rules were

developed to resolve "Don't Cares" into y and n outcomes. However, the generation of

these enhanced test cases was simplified by the fact that they are readily derived from

existing test cases and their outcomes will be precisely identical to the existing test cases

from which they were derived.Execution of the test cases required (1) modification of the

source code, (2) a specially written test driver routine which reads in the test cases and

outputs the results, and (3) stubs to substitute for subroutines and functions invoked by the
unit under test. As will be discussed in the next chapter, creation of a unique test

6

M. Hecht

SoHaK, Inc.
6 of 30

"1

U:_

- - Ok°_ooo.._ooo._ooo..

• 1_,,.4 0 0 0 ,..4 0 0 0 ,..4 aJ

_. :,oo.,oooo

_H

Z

,12
4

-- UU

..4 N #'_

,-_n. U ,4 _,* .-_

=ooo _.>.>..,oo o, •_"

_-4 _ I lieJtJ

i
!

!i
_J

-:_
eee

4141

I ! !

G
I::k:k:k| I I I I I I I

3

It .I.I
J2_
O0

3
U_

..g

,.or
£10

•q e'_ 0 0 "qR
O0 - - OM
,-I *_ 0 0 0 _0 _ 0 0 0 _-I 0 0 0 ,-* aJ

!.:.: -:s
";';_ eee

_., = n li e" ,...- CCC Q. II
CO00 >_>_>_,_ O O 0 u e
:UUUU ii i_ tl 4 E i! ill m s., re ._ II _1

Figure 3. Two Test Cases for Rule 40

7
ORIGINAL PAGE IS

OF POOR QUALIFY

M. Hecht

SoHaR, Inc.

7 of 30

environment for each task is a labor intensive process which could be eliminated by an

appropriate debugger capable of setting variables, tracing execution, and output results for

off-line analysis.

5 Results and Discussion

Success in Use of Automated Tools

The most significant result of this work was that the automated tools ECT and SEM have

eliminated a tedious and error-prone step in the verification process. Condition tables

were generated for all 13 tasks (total of 30 main and subroutines written in ANSI C) in

the EDRB node manager.

A related result is that automated tools provided a rapid unambiguous indication of

excessive complexity. For example, one task in the EDRB had 20 conditions and 1050
rules. This result was in and of itself sufficient motivation for recoding of the module.

Because these tasks were not contrived examples, it is reasonable to assume that the tools

used to generate these condition tables can be used for any code which has less than 15
conditions.

Traceability of Test Cases and Results

The ECT methodology provides a complete and traceable test program. Traceability of

all conditions in the code is provided through the automatically generated condition table.

Safety and reliability analyses are traceable to the TCEA. The ECT and TCEA together

form a test specification with unambiguous completion criteria. The test cases and results

are in turn traceable to the test specification. This traceability makes the ECT a

manageable process and facilitates IV&V, customer review, and regulatory agency review.

Fault Found Using the ECT Methodology

The ECT methodology uncovered a subtle fault in the HB routine synchronization

algorithm. A special values test in a feasible path created a state in which a "stale"

heartbeat count from the companion was greater than or equal to the local count. The

local node synchronized on this stale count. Analysis of the anomaly showed that although

the HB routine synchronizes on the frame number, it does not consider the age of the

heartbeat message. This age is measured by a variable called elapsed, which counts the

number of tenths of a frame that have elapsed since receipt of the most recent heartbeat.

When the HB routine requests the companion heartbeat count from the monitor task, it

also receives the elapsed value. If elapsed is greater than 2 ticks, then the program

specification defines the nodes as no longer being in synchronization. However, in this

ease, a program variable called insync which indicates whether the nodes are in

synchronization, was set to true even though no synchronization had actually occurred.

Earlier work with the ECT methodology also found a subtle fault [TAI87] in a fault

detection and recovery section of a smaller module. A possible explanation of the nature

of faults found by the methodology is that more obvious coding errors will have been

8

M. Hecht
SoHaR, Inc.
8 of 30

detected during development and testing by the original software implementer. Thus, only
errors in infrequently exercised paths with unusual values, i.e., "subtle" errors, will remain.
However, previous research on data from the YPL Deep Space Network [MCCA87] has
shown that such errors account for a disproportionate number of system failures. The
structural aspect of the ECT methodology considers all code without regard to the
functional aspects of the program. Because functionally oriented testing by the original
developers will have occurred before the start of verification, only the subtle errors will
remain.

Implementation Practices for Testability

A significant result of this research is the importance of designing and implementation of

code to ensure testability. The following rules were found to be effective:

. No more than 12 condin'ons per module: One measure of complexity of a module
is the number of branches formed by if, while, else, and related conditions. As

modules become more complex, they become more difficult to verify using either
manual or automated approaches. Although the automated portions of the ECT
methodology can handle modules of more than 20 conditions, they are difficult to
understand and have an excessively large number of rules.

J Minimize setting of variable after using: If the same variable is set and used several
times for each execution or iteration of the unit under test, then it is difficult to
conclusively evaluate its success because intermediate values are obliterated before

the results are output. Following this rule allows the return values of function to
be written to a record without an undue number of changes to the code and is
particularly important for operating system calls and other black box modules. This
method also reduces unintended interaction effects.

. Use parameters for subroutine calls, mbdmize use of global variables and pass
subroutine arguments by value: The principal advantage of information hiding for
the purpose of the ECT is that it makes writing of a test driver easier and facilitates
the creation of test cases. The other advantages of this rule are well known and
would apply in general to high quality software.

. List parameters in the following order: (1) input parameters, (2) input�output
parameters, and output parameters: Although the input and output parameters must
be separated in Ada, other languages such as C and FORTRAN, do not require
explicit separation. The primary motivation for this rule is to facilitate testing.
However, it also reduces the probability of inadvertently switching arguments or
misunderstanding.

Following these rules reduced the number of changes by more than 60% in the modules
tested. This reduction results in a more credible verification and also reduces the test
effort.

9

M. Hecht

SoHaR, Inc.
9 of 30

Test Case Generation

The approach to test case generation in this phase of the research was to manually define

the state of input values so that the path for each case was known a priori. The usual

approach is to instrument the code and vary the input (many path testing programs vary

the input randomly) within predefined ranges in the hopes of traversing most branches.

When the automated testing is concluded, manual test eases are created only for the

untraversed paths. The benefit of the a priori approach are:

lo A large reduction in the number of test cases that must be generated, stored, and
evaluated

2. Explicit traceability of each test case to a rule, special values, and path

. Easy creation of enhanced test cases generated from special values analysis and the

Test Case Enhancement Analysis.

Test eases examine the states of internal variables as well as the input and output. Thus,

testing requires the manipulation of internal variables, dynamically changing parameters,
and other intrusive actions. The test environment can be entirely custom developed or can

be built from existing tools within the operating system. In the QNX [QUAN88] operating

system under which the EDRB runs, a test environment was specially written to read in

test data, output results, and set values of internal variables and dummy variables

substituted for operating system functions.

Different considerations would apply in more sophisticated software development

environments. For example, the dbx tool in many implementations of UNIX 4.2 can set

all internal variables and print out all output variables without the need for a driver

routine; the test input can be read in through a script file and the output can be directed

to the appropriate output file. Thus, the first and second principles would no longer apply.

dbx also has some capabilities to control interaction with the operating system thereby

reducing the need to replace calls to the operating system with test data variables.

Promising Areas for Additional Tools Development

The accompanying viewgraphs include an estimation the time requirements for the ECT

given the current state of its development (i.e., the ECT and SEM tools). For a system the
size of the EDRB, close to 1.5 technical staff years would be required. However, most of

the effort is concentrated in three major tasks: generation of test cases, development of
test environments, and resolution of don't cares and the creation of additional test cases.

An additional candidate for automation is the generation of semantic relations. Although

not a particularly labor intensive task, it requires a detailed understanding of the semantics

of the module and is prone to errors. Errors in the statement of semantic relations can
in turn invalidate the rest of the ECT effort.

10

M. Hecht
SoHaR, Inc.
10 of 30

Therefore, the most promising areas four tools development are:

. Semantic Analyzers: The SEM program requires a semantic data input file which is

manually created. Experience in creating such files has shown that the process is

subject to analyst error. A semantic analyzer can generate such files automatically.

. Test Case Generator. Test ease generation requires identifying those input and

externally set variables that satisfy (or do not satisfy) each condition and the values

that should be assigned to these variables in order to execute the path specified by
each rule. This identification is a matter of tracing how variables are set and used

and may be amenable to automation using an existing static analyzer. This tool
would find each condition in the code, trace variables associated with these

conditions to their inputs, determine what ranges input values should be used to

satisfy the specifications imposed by the rule, prepare a test case input file, and print
the test case.

. Debugging Script Generator. The work needed to generate a test environment can

be largely reduced if batch oriented debugging tools such as dbx are used. The
importance of the batch orientation is that test eases can be written off-line and

input as files to the debugger, and debugger output can likewise be examined either

manually or automatically.

o Support for Generation of Additional Test Cases: Resolution of Don't Cares and the

generation of additional test cases requires understanding of system-level concerns
and association of these concerns with variables and control flow of the unit under

test. By definition, the process can not be automated; otherwise the designed could

be analyzed and the concerns would be resolved. However, providing cross

references to variables and control flows which reduce the repetitive labor involved

in performing this analysis, will result in a significant reduction of labor and in more

thorough and uniformly high quality analyses.

6 Conclusions

The result of this work was that it was possible to analyze a large section of code which

shares many characteristics in common with future real time distnqauted control systems that

will be implemented in the next generation of aircraft and space vehicles. The results

further showed that traceable test ease specifications are generated, that unambiguous

completion criteria can be established, and that automated tools can be successfully used.

Additional work is necessary to reduce time and resource requirements by the development

of appropriate tools. The benefits of such tools are exemplified by generation of the basic

condition table which was previously an error prone and labor intensive task. With the

ECT and SEM tools, this step has been reduced to a negligible portion of the total effort.

a

M. Hecht

SoHaR, Inc.
11 of 30

7 Acknowledgements

This work was sponsored by the NASA Langley Research Center under contract NAS1-
18811. The authors wish to acknowledge the interest and support of Mr. Carlos Liciega,
the technical monitor, as well as Ms. Susan Voigt, who provided the motivation which
resulted in this research.

References

KING69

GOOD75

MCCA87

QUAN88

TAI87

P. King, 'The interpretation of limited entry decision table format and
relationships among conditions", Computing Journal, Vol 12, p. 320,
November, 1969

J. Goodenough and S. Gerhart, 'Toward a Theory of Test Data Selection",
IEEE Transactions on Software Engineering, Vol. SE-1 No. 2, June, 1975, p.
156

J. M. McCall, et. al., Methodolog),for Software Reliability Prediction, Rome Air

Development Center, RADC-TR-87-171, November, 1987

Quantum Software Inc., QNX Operating System Reference Manual, available
from Quantum Software, Kanata, Ontario, Canada, 1988

A. Tai, M. Hecht, and H. Hecht, "A New Method for the Verification of

Fault Tolerant Software", Proc. EASCON '87, IEEE Catalog No. 87CH 2491-
9, November, 1987, p. 53

12

M. Hecht
SoHaR, Inc.
12 of 30

VIEWGRAPH MATERIALS

FOR THE

M. HECHT PRESENTATION

5794

W

m

es
t_
I--.
c-
O

illm

iiim

0
rj
"t3
0
U
C
c_

C
LU

-1
m

U.

0

C
0

¢0

ii

ill
s.--

¢D

1El

0

•- 0 ,- 0
Q- C/) m_ (_W

"0_ 3::0

0 _ o
c C_

(/3

e- Z
¢_
o

0
It-

a0

.£3
E

0
Z

M. Hecht
SoHaR, Inc.
13 of 30

.]J

Z

0
rr

0

M. Hech!

SoNaR, Inc.

14 of 30

=o
U_

M. Hechl

SoHaR, Inc.

15 of 30

O

O

M. Hechl

SoHaR, Inc.

16 of 30

=l

A

a
w

z
i-
z
o
o

o
.-I
0
a
0
-r"

k-
0
W

g --

_ L_,

0

O.

W
-.I

<

N II k

0 0 U
I_ II N I..l

. II "CI _0 °" "00 11
"a v v _

c_ 0 .,4 "U
_ _ 0

..._ _ c I(/)

_ U m
0 _

(N

0

-,-I

i

i

Ill "_

0 _

0

M. Hecht
SoHaR, Inc.
17 of 30

S

(D
Id.l

i
¢D
.£2
¢U
o_
I..

t_
>

o

"¢D
r--

8

rr"

f"_ ¢_

r- O ¢U

°
• "u ._o_

E® m "0 _
D _ _'0 0

=__o ___m_ c_.___ ._

_-cxl

_ oo
.__ _ _ _'__'

M. Hecht

SoHaR, Inc.

18 of 30

0

a.

t'...

M. Hechl

SoHaR, Inc.
19 of 30

W
fl=
X

m_

e=
o

m

es
m

¢=)
o_

F=

(0

G)

L.

i==

°°

,L=.====

O

oO

M. Hechl

SoHaR, Inc.

20 of30

M. Hecht
SoHaR, Inc.
21 of 30

!

+'"+' =
u_

. , , .. _U Vl U

4" _ ",J "* qU ',e _ W I,,, _- _ ._

: _ 9o_0* ,u o-- = -.
0 4 • _,Q_ 14D

I.,I :1:1 t.,._ _|* J_ qllA

,.+]++ . -..
-:_. + .. ;. .+, .] ._ +s _o+S

•" , o8g - - ,SiP

l+- ._I _ -+,__,;,.,__ ! if o.,....o!I,,.,. ,.o.....,--

- _ ..- . _. u _1 .| _,, .:__jJ i 8._-_-oo
P _

+,,_ ' ..., _ .- v-_ ,,.,-i 811,: :_ _ '_.-8_ .-..._., |.,.,
m. c_._ ,a-- _w©- -, . m m'. ,., ,_;----luu_ w u e- -
I ,+, • • C q

-,S, -

U •

©

-- ! e_ O

:. °,;:.
_.,,0

_ ++"+,=
U

¢ ,..

.g

8.,;

,f

gol

d ;."

g_ig_

U I _G

.2

g

_ _

ORIGINAL PAGE IS
OF POOR QUALITY

M. Hecht
SoHaR, Inc.
22 of 30

.'4

g

.=4

o=
..=1

¢_I -"

INI "'

.0

c
o

O

U

u

Ij

o

__illl|l||lllllllllllllllll|lllllllllllllll

_N_Cl|llllllilllllllllllllllillllllllllllllll

T |

.................. _

ORIGINAL PAGI?.IS
OF POOR QUALiTy

M. Hecht

SoHaR, Inc.

23 of 30

Routine: hb.c

Rule no: 2

Test Case no: 2.1

Desc. Author:

Date:

S. Hecht

June 8, 1989

Condition

C1

C2

C3
C4

C5

C6

C7

C8

C9

CI0

Cll
C12

C13

C14

!(mon=name_locate())

my_count<0
insync
TICKSPERFRAME>time

need_sync()
initial

status==mon

comp count>=0
inlt[al

need_sync()

compcount>=0
initial

need_sync()
creceive()==trans

Value

n

Y

Y

Y
Y

m

Y

Variable Name Applicable
Condition

/role*

my_count !cl/s,c2/b

bufl(comp_countl,elapsedl) c3/s

buf2(compcount2,elapsed2)

buf3(comp_count3,elapsed3)
insync c3/t,c5/s

time c4/t

need_syncl c5/t

need sync2
need sync3
initial

send2monl

send2mon2

send2mon3

monstat

transrep
transnam

!cl/s

c3/6

c14/s
cl4/t

/t - variable tested only

/s - variable set
/b - variable both tested and set

Input
Value

Expected Observed

Output Output

32767 0 0

5,0 5,0 5,0
0,0 0,0 0,0

0,0 0,0 0,0
1 0 0
6 6 6

1 1 1

0 0 0

0 0 0

1 0 0

0 1 1

0 0 0

0 0 0

0 0 0
-i 0 0

transl transl transl

M. Hecht

SoHaR, Inc.
24 of 30

T--"I

M. Hecht

SoHaR, Inc.

25 of 30

® o . o . o ,-

_ 7
m

___o_ o_OO_

M. Hechl

SoHaR, Inc.
26 of 30

_o
¢n

v--4

M. Hech!

SoHaR. Inc.

27 of 30

=o

M. Hech!

SoHaR, Inc.

2,8of 30

Z
0
u

(n
u)

0
Cl)
m

t'--

M. Flecht
SoHaR, Inc.
29 of 30

(n
;[
0
m

U)

.,.I
U
z
0
U

L_
0

"0

.Q

C

u

01
0

m

0
"(3
0
.C
G)
E

u
Ill

U 0,,
m

w_

C _

m

C"
0 o

o O.im

0
>

u

(,1 _)

c-
O

I--

C
m

Om
0.,.,

c
..- _)
CUEC
0 C

im

"0 >

r-
m

0.--
0.,_

m

4)
r-

Im 4_

u_ 01
"6._
0._.., U)
r'..,
(.1._
=0
(n

U)
(- (..

M. Hecht

SoHaK, Inc.
30 of 30

APPENDIX A -- ATTENDEES

5794

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

ADAMS, KIRK COMPUTER SCIENCES CORP.
ADAMS, NEIL BENDIX FIELD ENGINEERING CORP.

AGRESTI, BILL W THE MITRE CORP.

AIKENS, STEPHEN D DEPT. OF DEFENSE
ALANEN, JACK SOHAR, INC.
AMBROSE, LESLIE THE MITRE CORP.

AMMANN, PAUL E GEORGE MASON UNIVERSITY

ANDERSEN, BILL DEPT. OF DEFENSE
ANDERSON, FRANCES STANFORD TELECOMMUNICATIONS, INC.

ANGIER, BRUCE INSTITUTE FOR DEFENSE ANALYSIS

ARMSTRONG, MARY IIT RESEARCH INSTITUTE

ARMSTRONG, ROSE MOUNTAINET, INC.
ARNOLD, ROBERT S SOFTWARE PRODUCTIVITY CONSORTIUM

ASHTON, ANNETTE NAVAL SURFACE WEAPONS CENTER

ASTILL, PATRICIA CENTEL FEDERAL SERVICES
ATKINS, EARL ELECTRONIC WARFARE ASSOCIATION

AZUMA, KENNETH I FORD AEROSPACE CO.

BACHMAN, SCOTT DEPT. OF DEFENSE
BARDIN, BRYCE M HUGHES AIRCRAFT CO.

BARKSDALE, JOE .NASA/GSFC
BARNES, BRUCE H NATIONAL SCIENCE FOUNDATION

BARNES, DAVID UNISYS CORP.

BARSKY, JERRY BENDIX FIELD ENGINEERING CORP.
BASILI, VIC UNIVERSITY OF MARYLAND

BAYNES, PERCY VITRO CORP.

BEALL, SHELLEY SOCIAL SECURITY ADMINISTRATION
BENITEZ, MEG DEPT. OF DEFENSE

BEWTRA, MANJU CTA, INC.

BIOW, CHRISTOPHER DEFENSE COMMUNICATIONS AGENCY

BLAGMON, LOWELL E NAVAL CENTER FOR COST ANALYSIS

BLUM, BRUCE I JOHNS HOPKINS UNIVERSITY
BLUMBERG, MAURICE IBM

BOND, JACK DEPT. OF DEFENSE

BOND, PAUL SAIC
BOOTH, ERIC COMPUTER SCIENCES CORP.

BOURNE, WILLIAM AMERICAN SYSTEMS CORP.

BOYCE, MARY-ANN RMS TECHNOLOGIES, INC.

BRAUN, CHRIS CONTEL TECHNOLOGY CENTER
BREDESON, RICHARD W OMITRON, INC.

BRIAND, LIONEL UNIVERSITY OF MARYLAND

BRINKER, ELISABETH NASA/GSFC

BRISTOW, JOHN NASA/GSFC

BROPHY, CAROLYN NAVAL RESEARCH LAB
BROWN, HARROLD E NASA/MSFC

BROWN, MARTY COMPUTER SCIENCES CORP.

BUCHANAN, GEORGE A IIT RESEARCH INSTITUTE
BUCKLEY, JOE COMPUTER SCIENCES CORP.

BUHLER, MELANIE COMPUTER SCIENCES CORP.

BURCAK, THOMAS M PLANNING RESEARCH CORP.

BURLEY, RICK NASA/GSFC
BUSBY, MARY B IBM

BUSH, MARILYN NASA/JPL

5794

A-1

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

CAKE, SPENCER C HQ USAF/SCTT
CALDIERA, GIANLUIGI SOFTSIEL

CANTONE, GIOVANNI UNIVERSITY OF MARYLAND
CARD, DAVE COMPUTER SCIENCES CORP.

CARDENAS, SERGIO UNIVERSITY OF MARYLAND
CARLISLE, CANDACE NASA/GSFC

CARMODY, CORA PLANNING RESEARCH CORP.

CARPENTER, MARIBETH B CARNEGIE MELLON UNIVERSITY

CARRIO, MIGUEL TELEDYNE BROWN ENGINEERING
CASASANTA, RALPH COMPUTER SCIENCES CORP.

CAUSEY, MICHAEL A COMPUTER SCIENCES CORP.
CERNOSEK, GARY J MCDONNELL DOUGLAS SPACE SYSTEMS CO

CHASSON, MARGARET C IBM

CHEDGEY, CHRIS SPAR AEROSPACE CO.

CHMURA, LOUIS J NAVAL RESEARCH LAB
CHUNG, ANDREW FAA TECHNICAL CENTER

CHURCH, VIC COMPUTER SCIENCES CORP.

CISNEY, LEE NASA/GSFC
COBARRUVIAS, JOHN R NASA/JSC
COHEN, SARA GENERAL ELECTRIC CORP.

COLEMAN, MONTE DEPT. OF THE ARMY

COOK, JOHN F NASA/GSFC
CORBIN, REGINA SOCIAL SECURITY ADMINISTRATION

COTNOIR, DONNA COMPUTER SCIENCES CORP.

COUCHOUD, CARL B SOCIAL SECURITY ADMINISTRATION
COVER, DONNA COMPUTER SCIENCES CORP.

CRAWFORD, STEW
CREASY, PHIL MCDONNELL DOUGLAS ASTRONAUTICS CO.

CREECY, RODNEY HUGHES AIRCRAFT CO.

CREEGAN, JIM FORD AEROSPACE CO.
CREPS, DICK UNISYS CORP.

CROKER, JOHN LISAN CORP.

D'AGOSTINO, JEFF OAO CORP.

DAKU, WALTER VITRO CORP.

DANGERFIELD, JOSEPH W TELESOFT

DAS, PRASANTA THE ANALYTIC SCIENCES CORP.

DECKER, WILLIAM ,...COMPUTER SCIENCES CORP.
DEGRAFF, GEORGE GRUMMAN

DEMAIO, LOUIS NASA/GSFC

DEUTSCH, MICHAEL S HUGHES AIRCRAFT CO.

DEWBRE, DOYLE DEPT. OF DEFENSE

DIGNAN, DAVID M DEPT. OF DEFENSE

DODD, JOHN C COMPUTER SCIENCES CORP.

DOUGLAS, FRANK J SOFTRAN,INC.
DUNCAN, SCOTT P BELL COMMUNICATIONS RESEARCH, INC.

DUNN, NEPOLIA COMPUTER SCIENCES CORP.

DUQUETTE, RICHARD DEPT. OF LABOR

DUREK, TOM TRW
DUTTINE, VALERIE _ •.... ,..,,.......NASA/GSFC

DUVALL, LORRAINE DUVALL COMPUTER TECHNOLOGIES,INC.

DYER, MICHAEL IBM

A-2

s794 i

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

EARL, MICHAEL INTERMETRICS, INC.

EDWARDS, JOHN IIT RESEARCH INSTITUTE

EDWARDS, STEPHEN G NASA/GSFC
EGLITIS, JOHN LOGICON, INC.

ELLIOT, MATTHEW NASA/STX

ELLIOTT, DEAN F. SWALES & ASSOCIATES INC.

ELLIS, WALTER IBM
EMEIGH, MICHAEL LOGICON, INC.

EMERSON, CURTIS NASA/GSFC
EMERY, RICHARD VITRO CORP.

EPSTEIN, WILLIAM IBM

ERB, DONA M THE MITRE CORP.
ESHLEMAN, LAURA DEPT. OF DEFENSE

ESKER, LINDA _ COMPUTER SCIENCES CORP.

EUSTICE, ANN IIT RESEARCH INSTITUTE

EVANCO, WILLIAM THE MITRE CORP.

FARR, BILL NAVAL SURFACE WEAPONS CENTER

FEERRAR, WALLACE THE MITRE CORP.

FERNANDEZ, AL COMPUTER SCIENCES CORP.

FERRY, DAN COMPUTER SCIENCES CORP.

FINK, MARY LOUISE A EPA
FISHKIND, STAN NASA/HEADQUARTERS

FONG, GEORGE IIT RESEARCH INSTITUTE
FORSYTHE, RON NASA/WALLOPS FLIGHT FACILITY

FOURROUX, KATHY TELEDYNE BROWN ENGINEERING

FOUSER, THOMAS J JET PROPULSION LAB

GACUK, PETER SPAR AEROSPACE CO.
GAFFKE, WILLIAM E PROJECT ENGINEERING, INC.

GAFFNEY, JOHN SOFTWARE PRODUCTIVITY CONSORTIUM

GAITHER, MELISSA CRMI

GALLAGHER, BARBARA DEPT. OF DEFENSE

GARCIA, ENRIQUE A JET PROPULSION LAB
GARRETT, TOM IRS

GARY, ALAN V TELEDYNE BROWN ENGINEERING

GELPERIN, DAVID SOFTWARE QUALITY ENGINEERING

GIESER, JIM VITRO CORP.
GILSTRAP, LEWEY COMPUTER SCIENCES CORP.

GIRAGOSIAN, PAUL THE MITRE CORP.

GLASS, ROBERT L COMPUTING TRENDS
GODFREY, PARKE UNIVERSITY OF MARYLAND

GODFREY, SALLYNASA/GSFC

GOGIA, B. K ENGINEERING & ECONOMY RESEARCH, INC.

GOINS, MELVIN DEPT. OF DEFENSE

GOLDEN, JAMES H SANDERS ASSOCIATION

GOLDEN, JOHN R EASTMAN KODAK CO.
GOLDSMITH, LARRY DEPT. OF LABOR

GORDON, HAYDEN H COMPUTER SCIENCES CORP.

GORDON, MARC D BOOZ, ALLEN & HAMILTON, INC.

GOUW, ROBERTTRW
GRAHAM, MARCELLUS NASA/MSFC

GRAVES, RUSSELL J DEPT. OF DEFENSE

5794

A-3

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

GRAVITTE, JUNE A FORD AEROSPACE CO.
GREEN, DANIEL U.S. AIR FORCE

GREEN, DAVID COMPUTER SCIENCES CORP.

GREEN, SCOTT NASA/GSFC

GREGORY, SAMUEL T
GRIMALDI, STEVE ,.BOOZ, ALLEN & HAMILTON,
GRONDALSKI, JEAN COMPUTER SCIENCES CORP.

GUENTERBERG, SHARON PLANNING RESEARCH CORP.

GUPTA, LAKSHMI FORD AEROSPACE CO.

INC.

HALL, DANA SYSTEMS ENGINEERING AND SECURITY,

HALL, GARDENER FORD AEROSPACE CO.

HALTERMAN, KAREN NASA/GSFC

HARRIS, ALAN W LOGICAN, INC.
NASA/GSFCHARRIS, BERNARD

HAYES, CAROL UNISYS CORP.

HEASTY, RICHARD COMPUTER SCIENCES CORP.
HECHT, MYRON SOHAR' INC.

HECK, JOANN L COMBER SCIENCES CORP.

HEFFERNAN, HENRY G EDP NEWS SERVICES

HELLER, GERRY COMPUTER SCIENCES CORP.
HENDRICK, ROBERT B COMPUTER SCIENCES CORP.

HENRY-NICKENS, STEPHANIE NASA/GSFC

HERBOLSHEIMER, CHARLES FEDERAL AVIATION AGENCY

HILL, KEN _ NASA/GSFC

HILL, MIKE MARTIN MARIETTA
HIOTT, JIM UNISYS CORP.

HOCHHAUSER, S SOHAR, INC.

HODGES, DEIDRA ...,, ,MARTIN MARIETTA
HOLLADAY, WENDY T NASA

HOLMES, BARBARA CRMI

HOOTEN, MONICA FORD AEROSPACE CO.

HORMBY, TOM W JOHNS HOPKINS UNIVERSITY

HOUSTON, SUSAN LISAN CORP.
HUMPHREY, WATTS SOFTWARE ENGINEERING INSTITUTE

IDELSON, NORMAN ARINC RESEARCH CORP.

IRELAND, THOMAS TEKTRONIX DEFENSE SYSTEMS

ISKOW, LARRY CENSUS BUREAU

JAHANGIRI, MAJID COMPUTER SCIENCES CORP.

JAKAITIS, JOYCE AMERICAN SYSTEMS CORP.

JELETIC, JIM NASA/GSFC

JENKINS-BNAFA, JOVITA TRW
JOESTING, DAVID BENDIX FIELD ENGINEERING CORP.

JOHANNSON, HANK FORD AEROSPACE CO.

JONES, CARL SCIENCE APPLICATIONS, INC.

JONES, DAVID UNISYS CORP.

JORDAN, LEON COMPUTER SCIENCES CORP.

KARDATZKE, OWEN NASA/GSFC

KARLIN, JAY PROJECT ENGINEERING, INC.

KEARNEY, ROBERT PLANNING RESEARCH CORP.

5794

A-4

INC

FOURTEENTHANNUALSOFTWAREENGINEERING WORKSHOP ATTENDEES

KELLY, JOHN C JET PROPULSION LAB
KELLY, KIM R IBM

KENNEDY, ELIZABETH A ROCKWELL INTERNATIONAL

KESTER, RUSH COMPUTER SCIENCES CORP.

KHAITAN, ANURAG UNIVERSITY OF MARYLAND
KICKLIGHTER, BOB NATIONAL LIBRARY OF MEDICINE

KILE, THOMAS DEPT. OF THE ARMY

KIMMINAU, PAMELA S DEPT. OF DEFENSE
KIRKPATRICK, MARK'... CARLOW ASSOC.

KISHAN, SUSHMA STANFORD TELECOMMUNICATIONS, INC.
KLEMM, DANIEL FORD AEROSPACE CO.

KNIGHT, JOHN C UNIVERSITY OF VIRGINIA

KOESER, KEN VITRO CORP.

KOPP, ALLAN TELESOFT
KOUCHAKDJIAN, ARA UNIVERSITY OF MARYLAND

KRAHN, MARGIE DEPT. OF DEFENSE

KRALY, KAREN NATIONAL LIBRARY OF MEDICINE

KRAMER, NANCY PLANNING RESEARCH CORP.

KRAUS, PAUL J COMPUTATIONAL ENGINEERING, INC.
KRIEGMAN, DAVID SRA CORP.

KUDLINSKI, ROBERT A NASA/LARC
KUHN, RICK NATIONAL BUREAU OF STANDARDS
KUNKEL, HENRY BOEING AEROSPACE CO.

LABAUGH, ROBERT MARTIN MARIETTA

LAL, NAND NASA/GSFC
LAMAS, NIKI CENSUS BUREAU

LANDIS, LINDA COMPUTER SCIENCES CORP.

LAVALLEE, DAVID '....FORD AEROSPACE CO.

LEAKE, STEPHEN NIST
LEE, JOHN A GENERAL DYNAMICS

LEHMAN, MANNY IMPERIAL COLLEGE

LEVAY, KAREN COMPUTER SCIENCES CORP.
LEVESON, NANCY G UNIVERSITY OF CALIFORNIA

LEVITT, DAVID S COMPUTER SCIENCES CORP.

LIGHT, WARREN CTA, INC.

LIN, CHI Y JET PROPULSION LAB

LITTLEWOOD, CHRISTOPHER MARTIN MARIETTA
LIU, JEAN C COMPUTER SCIENCES CORP.

LIU, KUEN-SAN COMPUTER SCIENCES CORP.

LOCKMAN, ABE GTE
LOESH, BOB E JET PROPULSION LAB

LOTT, CHRIS UNIVERSITY OF MARYLAND

LUCIER, ERNIE NASA/HEADQUARTERS
LUCZAK, RAY COMPUTER SCIENCES CORP.

LYTTON, VICTOR H DEPT. OF AGRICULTURE
LYU, MICHAEL BRONX COMMUNITY COLLEGE

LYU, MICHAEL R. • JET PROPULSION LAB

LaMARSH, MARGO .NASA/LARC

MACCHINI, BRUNO UNIVERSITY OF MARYLAND

MADDOCK, KAREN R TECHNOLOGY PLANNING, INC.
MADSEN, KENT UNIVERSITY OF CALIFORNIA

5794

A-5

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

MAGILL, ELEANORE L GENERAL ELECTRIC CORP.
MALAY, SUSAN PLANNING ANALYSIS CORP.

MALLET, BOB TECHNOLOGY PLANNING, INC.
MALTHOUSE, NANCY LOGICON, INC

MARKS, TOM DEPT. OF DEFENSE

MARSHLICK, MICHAEL COMPUTER SCIENCES CORP.
MARTINEZ, BILL FORD AEROSPACE CO.
MARTSCHENKO, WILLIAM N UNIVERSITY OF MARYLAND

MARVRAY, ESMOND NASA/GSFC
MATHIASEN, CANDy UNISYS CORP.

MCCLURE, MARTY

MCCOMAS, DAVID
MCDERMOTT, TIM

MCDONALD, BETH

MCGARRY, FRANK

MCGARRY, PETER
MCGOWAN, CLEMENT CONTEL TECHNOLOGY CENTER

MCKENNA, JOHN J DEPT. OF DEFENSE
MCWEE, HARRY DEPT. OF DEFENSE
MEHLER, STEVE IIT RESEARCH INSTITUTE

MERIFIELD, JAMES ADVANCED TECHNOLOGY, INC.
MICKEL, SUSAN GENERAL ELECTRIC CORP.
MISHOE, JAMES P IIT RESEARCH INSTITUTE

MOLESKI, LAURA CRMI

MOLESKI, WALT NASA/GSFC

MOONEY, PAT_ _ IBM
MORUSIEWICZ, LINDA M COMPUTER SCIENCES CORP.
MOYLEN, ALDEN COMPUTER SCIENCES CORP.

MUDRONE, JAMES DEPT. OF DEFENSE
ERICH SPARTA INCMULLER, ,

MUSA, JOHN D AT&T BELL LABS
MYERS, MONTGOMERY UNISYS CORP.

MYERS, PHILIP I COMPUTER SCIENCES CORP.

............ ' BENDIX FIELD ENGINEERING CORP.

................... NASA/GSFC

................... COMPUTER SCIENCES CORP.

................... DEPT. OF DEFENSE

................... NASA/GSFC

................... GENERAL ELECTRIC CORP.

NARROWS, BERNIE BENDIX FIELD ENGINEERING CORP.

NICKENS, DON O HARRIS SPACE SYSTEMS CORP.

NORCIO, TONY F UNIVERSITY OF MARYLAND

NORO, MASAMI UNIVERSITY OF MARYLAND

O'BRIEN, DAVID CONCURRENT COMPUTER CO.

O'BRIEN, ROBERT NASA/GSFC
O'MALLEY, JAMES HGO TECHNOLOGY

OIMALLEY, RUTH E HGO TECHNOLOGY

OHLMACHER, JANE SOCIAL SECURITY ADMINISTRATION

PAGE, GERALD COMPUTER SCIENCES

PAJERSKI, ROSE NASA/GSFC

PEARSON, BOYD ,.._, NASA/GSFC

PELNIK, T_ M THE MITRE CORP.

PENNEY, LEONIE PENNEY ASSOCIATES
PEREZ, FRANK UNISYS CORP.

PERKINS, DOROTHY NASA/GSFC

PETERSEN, JANE B AUTOMETRIC, INC.

CORP.

5794

A-6

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

PFLARTER, DAVE MCDONNELL DOUGLAS CORP.

PIETRASANTA, AL JET PROPULSION LAB

PLETT, MICHAEL E COMPUTER SCIENCES CORP.
PLUNKETT, THERESA DEPT. OF DEFENSE

POLE, THOMAS SOFTWARE PRODUCTIVITY CONSORTIUM

POLLACK, JAY COMPUTER SCIENCES CORP.
PORTER, ADAM A UNIVERSITY OF CALIFORNIA

POTTER, WILLIAM NASA/GSFC
PRESSMAN, TOM STRICTLY BUSINESS COMPUTER SYSTEMS

PRINCE, ANDY PLANNING RESEARCH CORP.

PRISEKIN, JULIA IIT RESEARCH INSTITUTE
PUGH, DOUGLAS H IIT RESEARCH INSTITUTE

PUMPHREY, KAREN COMPUTER SCIENCES CORP.

PURCELL, ELIZABETH THE MITRE CORP.

PUTNEY, BARBARA NASA/GSFC

QUANN, EILEEN S FASTRAK TRAINING, INC.

RADOSEVICH, JIM .NASA/HEADQUARTERS

RANADE, PRAKASH V COMPUTER SCIENCES CORP.
RANEY, DALE L UNISYS CORP.

RAPP, DAVE DEPT. OF DEFENSE

REDDING, JOHN DEFENSE COMMUNICATIONS AGENCY

REDDY, K G VNG SOFTWARE CONSULTING SERVICES

RICHARD, DAN IBM
RITTER, SHEILA J NASA/GSFC

ROBILLARD, PIERRE N UNIVERSITY OF MONTREAL

ROBINSON, ALICE B NASA/HEADQUARTERS
ROBINSON, STEVE DYNAMICS RESEARCH CORP.

RODA, A. C." PLANNING RESEARCH CORP.

ROGERS, KATHY THE MITRE CORP.

ROMBACH, DIETER H UNIVERSITY OF MARYLAND

ROTTERMAN, GENE GENERAL DYNAMICS
ROY, DAN FORD AEROSPACE CO.

RUDOLPH, RUTH COMPUTER SCIENCES CORP.

SALASIN, JOHN GTE

SANDERS, ANTONIO NASA/GSFC

SARY, CHARISSE COMPUTER SCIENCES CORP.

SAUBLE, GEORGE OMITRON, INC.

SAVANH, VIRASACH DEPT. OF LABOR

SCHEIDT, DAVE IIT RESEARCH INSTITUTE
SCHELLHASE, RONALD J COMPUTER SCIENCES CORP.

SCHMIDT, SANDY BOOZ, ALLEN & HAMILTON, INC.

SCHULER, MARY P NASA/LARC
SCHWARTZ, BENJAMIN L THE ANALYTIC SCIENCES CORP.

SCOTT, STEVE UNISYS CORP.

SEAVER, DAVID P PROJECT ENGINEERING, INC.

SEIDEWITZ, ED NASA/GSFC
SELBY, RICHARD W UNIVERSITY OF CALIFORNIA AT IRVINE

SEVERINO, TONY GENERAL ELECTRIC/RCA

SHANKLIN, ROBERT COMPUTER SCIENCES CORP.

SHAWE, M BENDIX FIELD ENGINEERING CORP.

A-7

5794

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

SHEKARCHI, JOHN COMPUTER SCIENCES CORP.

SHEPPARD, SYLVIA B NASA/GSFC

SHOAN, WENDY NASA/GSFC
SIEGERT, GREG .. IIT RESEARCH INSTITUTE

SILBERBERG, DAVID NATIONAL COMPUTER SECURITY CENTER
SLACK, IKE MCDONNELL DOUGLAS ASTRONAUTICS CO.

SLEDGE, FRANK GTE
SLOVIN, MALCOLM COMPUTER SCIENCES CORP.

SMITH, CASSANDRA THE MITRE CORP.

SMITH, GENE NASA/GSFC
SMITH, LAURIE COMPUTER SCIENCES CORP.

SMITH, M C THE MITRE CORP.

SMITH, OLIVER EG&G WASC, INC.

SMITH, PAUL H NASA/HEADQUARTERS
SO, MARIA MCDONNELL DOUGLAS SYSTEMS CORP.

SOL-GUTIERREZ, ANA FORD AEROSPACE CO.

SOLOMON, CARL ST SYSTEMS CORP.
=

SORKOWITZ, AL R... DEPT. OF THE NAVY

SOVA, DON NASA/HEADQUARTERS
SPANGLER, ALAN IBM

SPENCE, BAILEY ,...... COMPUTER SCIENCES CORP.

SPIEGEL, DOUG .NASA/GSFC
SQUIRE, JON WESTINGHOUSE ELECTRIC CORP.

SQUIRES, BURTON E CONSULTANT

STAFFORD, BRUCE IRS
STALLARD, JOHN DEFENSE COMMUNICATIONS AGENCY

STARK, MICHAEL NASA/GSFC

STEGER, WARREN COMPUTER SCIENCES CORP.

STEINBACHER, JODY NASA/JPL
STICk, RICHARD HEI

STOKES, ED COMPUTER SCIENCES CORP.

STRAUB, PABLO UNIVERSITY OF MARYLAND

STUART, ANTOINETTE D DEPT. OF THE NAVY

SUD, VED THE MITRE CORP.
SUN, ALICE THE MITRE CORP.

SWALTZ, LEON IBM

SZULEWSKI, PAUL C. S. DRAPER LAB, INC.

TANG, Y. K FORD AEROSPACE CO.

TASAKI, KEIJI NASA/GSFC
TAUSWORTHE, BOB NASA/JPL

TKVASSOLI, N_AZ,,....COMPUTER SCIENCES CORP.

TAYLOR, GUY FLEET COMBAT DIRECTION SYSTEMS

THACKREY, KENT PLANNING ANALYSIS CORP.
THOMAS, DONNA COMPUTER SCIENCES CORP.

THOMPSON, JOHN T FORD AEROSPACE CO.

THORNTON, THOMAS NASA/JPL
THREADGILL, PETER DEPT. OF DEFENSE

TIAN, JIANHUI UNIVERSITY OF MARYLAND

TRAYSYELUE, WEISNER COMPUTER SCIENCES CORP.

TRUSZKOWSKI, WALT F NASA/GSFC

TZENG, NIGL NASA/STX

5794

A-$

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

ULERY, BRADFORD UNIVERSITY OF MARYLAND

ULLMAN, RICHARD ST SYSTEMS CORP.

URBINA, DANIEL FORD AEROSPACE CO.
URR, CLIFFORD PLANNING ANALYSIS CORP.

VALETT, JON NASA/GSFC

VALETT, SUSAN NASA/GSFC

VANDERGRAFT, JAMES S COMPUTATIONAL ENGINEERING, INC.

VAUGHAN, JOE SOCIAL SECURITY ADMINISTRATION
VEHMEIER, DAWN R OASD(P&L)WSIG

VERNACCHIO, AL NASA/GSFC

VIENNEAU, ROBERT KAMAN SCIENCES CORP.
VOIGT, DAVID BENDIX FIELD ENGINEERING CORP.

VOIGT, SUSAN NASA/LARC

VUOLO, BOB NASA/JPL

WALIGORA, SHARON R COMPUTER SCIENCES CORP.

WALKER, GARY N.. JET PROPULSION LAB

WALKER, JOHN IIT RESEARCH INSTITUTE

WALL, TIM SPARTA, INC.
WALLACE, DOLORES NATIONAL INSTITUTE OF STANDARDS & TEC

WARTIK, STEVEN SOFTWARE PRODUCTIVITY CONSORTIUM

WATSON, BARRY IIT RESEARCH INSTITUTE

WAUGH, DOUG IBM
WEBSTER, THOMAS M COMPUTATIONAL ENGINEERING, INC.

WEEKLEY, JIM FORD AEROSPACE CO.
WEISMAN, DAVID UNISYS CORP.
WEISS, DAVE SOFTWARE PRODUCTIVITY CONSORTIUM

WENDE. CHARLES NASA/GSFC

WENDE, ROY FAIRCHILD SPACE CO.

WESTON, WILLIAM NASA/GSFC
WHITESELL, STEVEN A COMPUTER SCIENCES CORP.

WILBERT, CARL K NASA/HEADQUARTERS

WILDER, DAVID C DEPT. OF DEFENSE
WILLIAMS, CHERYL CTA, INC.

WILSON, BILL M QUONG ASSOC.

WILSON, RUSSELL BOEING AEROSPACE CO.

WITTIG, MIKE IIT RESEARCH INSTITUTE

WONG, ALICE A FEDERAL AVIATION AGENCY
WONG, WILLIAM NATIONAL INSTITUTE OF STANDARDS & TEC

WOOD, DICK COMPUTER SCIENCES CORP.

WOOD, TERRI NASA/GSFC

YANG, CHAO NASA/GSFC

YOUMAN, CHARLES THE MITRE CORP.

ZAVELER, SAUL _ U,S. AIR FORCE
ZAWILSKI, TONY THE MITRE CORP.

ZELKOWITZ, MARV UNIVERSITY OF MARYLAND

ZIMET, BETH COMPUTER SCIENCES CORP.
ZIMMER, JANET IIT RESEARCH INSTITUTE

5794

A-9

ql

!

i

|
Ii

II

!

APPENDIX B -- SEL BIBLIOGRAPHY

5794

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedinus From the First Summer Software Enui-

neerinu Workshop, August 1976

SEL-77-002, Proceedinus From the Second Summer Software En-

gineerina Workshop, September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton

and S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Des_an Spq_ifications Lanuuaues

Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedinus From the Third Summer Software Enui-

neerinq Workshop, September 1978

SEL-78-006, GSFC Software E_qineerinq Research R_quirements

AnalTsis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the R_71_qh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Prouram (SAP)

User's Guide (Revision 3), W. J. Decker and W. A. Taylor,
July 1986

SEL-79-002, The Software Enqin_erinu LaboratorT; R_lation-

ship Euuations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module R_positor7 (CSMR) System
Description and User's Guide, C. E. Goorevich, A. L. Green,

and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, _arber, and Gordon Pro-

uram Desiun Lanuuace (PDL) in the Goddard Space F1iuht Center

(GSFC) Code 580 Software DesiqD Environment, C. E. Goorevich,

A. L. Green, and W. J. Decker, September 1979

9913

B-1

SEL-79-005,_Proceedinq_ _ From_th@ Fourth Summer Software En-

qineerinu Workshop, November 1979

SEL-80-002, Multi-Level Expression Desian Lanauaqe-

Reu_i_ement Level (MEDL-R) System Evaluation, W. J. Decker

and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular SD%Gecraft Ground Support

Software System (MMS/GSSS) State-of-the-Art Computer Systems/
Compat_b[i_£vStu_v, T. Weideh,_M. McClellan, and

P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,

A. M. Miller, November 1980 _ _ _

SEL-80-006, Proceedinas From the Fifth Annual Software Enai-

neerina Workshop, November 1980 _

SEL-80-007, An ADDraisal of Selected Cost/Resource Estimation

Models for Software Systems, J. F. Cook and F. E. McGarry,
December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)

User's Guide, J. F. Cool-and E, EdWards, February 1981

SEL-81-009, Software Enuineerinu Laboratory Proarammer Work-
bench Phase 1 Evaiuatio_, W. J, Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluatinq Software Development bY Analysis of
Chanae _ta, D. M. Weiss, November 1981

SEL-81-012, The Ravleiah Curve as a Model for Effort Distri-
bution Over the Life of_-S_[um _Scaie S0f£ware_$ystems,

G. O. Picasso, December 1981 _

SEL-81-013, Proceedinus From the Sixth Annual Software Enqi-
neerinu Workshop, December 1981

SEL-81-014, Automated Collection of Software Enqineerinu Data

in the Software Enaineerinq Laboratory (SEL),-A. L. Green_ '

W. J. Decker, and F. E.-Mc_a_ry, September 1981

SEL'81-i0i, Guide to Data C0ilectlon, v. E. Church,

D. N. Card, F. E. McGarry, et al., August 1982 _ _

SEL-81-104, The Software Enqineerinu Laboratory, D. N. Card,

F. E. McGarry, G. Page, et al., February 1982t

9913

B-2

SEL-81-107, Software Enuineerina Laboratory (SEL) Compendium

9_, W. J. Decker, W. A. Taylor, and E. J. Smith,

February 1982

SEL-81-110, Evaluation of an Independent Verification and

Validation (IV&V) Methodoloqy for Fl_aht Dynamics, G. Page,

F. E. McGarry, and D. N. Card, June 1985

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Manauement Measures of Software

Develooment, G. Page, D. N. Card, and F. E. McGarry,

September 1982, vols. 1 and 2

SEL-82-004, Collected Software Enuineerina Papers:

ume i, July 1982

VOI-

SEL-82-007, Proceedinas From the Seventh Annual Software

Enqineerinq Workshop, December 1982

SEL-82-008, Evaluatina Software DeveloPment by Analysis of
Chanqes: The Data From the Software Enaineerina Laboratory,

V. R. Basili and D. M. Weiss, December 1982

SEL-82-I02, FORTRAN Static Source Code Analyzer Prouram

(SAP) System Description (Revision 1), W. A. Taylor and

W. J. Decker, April 1985

SEL-82-I05, Glossary of Software Enaineerina Laboratory

_, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

SEL-82-806, Annotated Biblioqraphy of Software Enuineerinu
Laboratory Literature, M. Buhler and J. Valett, November 1989

SEL-83-001, An Approach to Software Cost Estimation,

F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Softw%re Development,

D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Enaineerinq Papers:

ume II, November 1983

Vo i-

SEL-83-006, Monitorinq Software Dev_lopment Throuqh Dynamic

Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedinqs From the Eiqhth Annual Software En-

qin_rinq Workshop, November 1983

9913

B-3

SEL-83-I06, _onitorina Software Development Throuah DYnamic
Variables (Revision 1), C. W. Doerflinger, November 1989

SEL-84-001, Manaaer's Handbook for Software Development,

W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-003, Investiuation of SDeciflcation Measures for the
Software Enaineerina Laboratory (SEL), W. W. Agresti,

V. E. Church, and F.. E. McGarry, December 1984

SEL-84-004, Proceedinus From the Ninth Annual Software Enai-

neerinu Workshoo, November 1984

SEL-85-00i, A Comparison of Software Verification Techniaues,

D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al., April

1985

SEL-85-002, Ada Trainina Evaluation and Recommendations From

the Gamma Ray Observatory Ada Development Team, R. Murphy

and M. Stark, October 1985

SEL-85-003, Collected Software En0ineerinq Papers: Vol-

ume III, November 1985

SEL-85-004, Evaluations of Software Technoloqies: Testina,

CLEANROOM. and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testing, D. N. Card,

C. Antle, and E. Edwards, December 1985

SEL-85-006, proceedinus From the Tenth Annual Software Enqi-

neerinu Workshop, December 1985

SEL-86-001, Proqrammer's Handbook for Fliqht Dynamics Soft-

ware Develooment, R. Wood and E. Edwards, March 1986

SEL-86-002, General Obiect-Oriented Software Development,

E. Seidewitz and M. Stark, August 1986

SEL-86-003, Fliqht Dynamics System Software DeveloPment En-
vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Enqineerina Papers:

ume IV, November 1986

Vo i-

SEL-86-005, M@asurinq Software Design, D. N. Card, October

1986

SEL-86-006, Proceedinas From the Eleventh Annual Software

Enqineerinu Workshop, December 1986

B-4

9913
=

SEL-87-001, Product Assurance Policies and Procedures for

Fliqht Dynamlcs Software Development, S. Perry et al., March
1987

SEL-87-002, Ada Style Guide (Version 1.11, E. Seidewitz

et al., May 1987

SEL-87-003, Guidelines for ADDlvinq the Composite Specifica-

tion Model (CSM), W. W. Agresti, June 1987

SEL-87-004, Assessin0 the Ada Design Process and Its Impli-

cations: A Case Study, S. Godfrey, C. Brophy, et al.,

July 1987

SEL-87-008, Data Collection Procedures for the Rehost_d SEL

Database, G. Heller, October 1987

SEL-87-009, Collected Software Enuineering Papers: Volume V,

S. DeLong, November 1987

SEL-87-010, Proceedina_ From the Twelfth Annual Software En-

uineerinq Workshop, December 1987

SEL-88-001, System Testlnu of a Production Ada Prolect: The

GRODY Study, J. Seigle, L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Enqineering Papers: Vol-
ume Vl, November 1988

SEL-88-003, EvolutiOnrr°Of Ada Technoloqy in the Fliqht Dynam-

ics Area: Pesign Phase Analysis, K. Quimby and L. Esker,
December 1988

SEL-88-004, Proceedinq of the Thirteenth Annual Software

Enqineering Workshop, November 1988

SEL-88-005, Proceedinus of the First NASA Ada User's Sympo-
sium, December 1988

SEL-8g-002, ImPlementation of a Production Ada Project: The
GRODY Study, S. Godfrey and C. Brophy, September 1989

SEL-89-003, Software Manauement Environment ($ME) Concepts

and Architecture, W. Decker and J° Valett, August 1989

SEL-89-004, Evolution of Ada Technoloqy in the Fliqht Dy-
namics Area: Implementation/Testing Phase Analysis,

K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry,
November 1989

9913

B-5

SEL-89-005, Lessons Learned in the Transition to Ada From

FORTRAN at NASA/Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineerinq Papers:

ume VII_ November 1989

Vol-

SEL-89-007, _roceedinas of the Fourteenth Annual Software

EnqineerinQ Workshop, November 1989

SEL-89-008, Proceedinus of the Second NASA Ada Users' Sympo-

sium, November 1989

SEL-89-101, Software Enqineerinq Laboratory (SEL) Database

Orqanization and User's Guide (Revision i), M. So, G. Heller,

S. Steinberg, K. Pumphrey, and D. Spiegel, February 1990

SEL-90-001, Database Access Menaq@r for the Software Enui,
neerinq Laboratory (DAMSEL) User's Guide, M. Buhler and

K. Pumphrey, April 1990

SED-RELATED LITERATURE

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case Study,"
Proceedinas of the First International Symposium on Ada for

_he NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Proqram Transformation and Pro-

gramminq Environments. New York: Springer-Verlag, 1984

iBailey, J. W., and V. R. Basili, "A Meta'Model for Soft-

ware Development Resource Expenditures," Proceedinas of the
Fifth International Conference on Software Enqin_erinq.

New York: IEEE Computer Society Press, 1981

7Basili, V. R., M%int_nance = Reuse-0riented SQftware

Deve!0Dment, University of Maryland, Technical Report

TR-2244, May 1989

iBasili, V. R., "Models and Metrics for Software Manage-

ment and Engineering," ASME Advances in ComPuter Technoloqv,

January 1980, vol. 1

7Basili, V. R., Software Development: A Paradiqm for the

Future, University of Maryland, Technical Report TR-2263,

June 1989

Basili, V. R., Tutorial on Models and Metrics for Software

Manaqement and Enqineerinu. New York: IEEE Computer Society

Press, 1980 (also designated SEL-80-008)

9913

B-6

3Basili, V. R., "Quantitative Evaluation of Software Meth-

odology," Proceedinas of the First Pan-Pacific Computer Con-

ference, September 1985

1Basili, V. R., and J. Beane, "Can the Parr Curve Help With

Manpower Distribution and Resource Estimation Problems?,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

1Basili, V. R., and K. Freburger, "Programming Measurement

and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. I

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-

ships Between Effort and Other Variables in the SEL,"

Proceedinas of the International Computer Software and Ap-
olications Conferenc@, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction

and Reliability Assessment in the SEL Environm@n_, University
of Maryland, Technical Report TR_i699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and

Complexity: An Empirical Investigation," Communications of
the ACM, January 1984, vol. 27, no. 1

1Basili, V. R., and T. Phillips, "Evaluating and Comparing

Software Metrics in the Software Engineering Laboratory,"

Proceedinas of the ACM SIGMETRICS Symposium/Workshop: Oual-
itv Metrics, March 1981

Basili, V. R., and J. Ramsey, Structural Coveraae of Func-

tional Testinq, University of Maryland, Technical Report
TR-1442, September 1984

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-

type Expert System for Software Engineering Management,"
Proceedinus of the IEEE/MITRE Expert Systems in Government

_, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-

ures for Software Development," Proceedinus of the Workshop

on Ouantitative Software Models for Reliability, ComDlexitv,
_UlCI___. New York: IEEE Computer Society Press, 1979

5Basili, V., and H. D. Rombach, "Tailoring the Software

Process to Project Goals and Environments," Procee4$nqs of

the 9th International Conference on Software Enqineerinq,
March 1987

9913

B-7

5Basili, V., and H. D. Rombach, "T A M E: Tailoring an Ada

Measurement Environment," Proceedinus of the Joint Ada Con-

ference, March 1987

5Basili, V., and H. D. Rombach, "T A M E: Integrating

Measurement IntD Software Environments," University of

Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project:

Towards Improvement-Oriented Software Environments," IEEE
Transactions on Software Enaineerinu, June 1988

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive

Framework for Reuse: A Reuse-Enablinu Software Evolution

Environment, University of Maryland, Technical Report

TR-2158, December 1988

2Basili, V. R., R. W. Selby, Jr., and T. Phillips, "Metric

Analysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Enuineerinu, November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use
of an Environments's Characteristic Software Metric Set,"

Proceedings of the Eiuhth International Conference on Soft-

ware Enqineerinu. New York: IEEE Computer Society Press,
1985

Basili, V. R., and R. W. Selby, Jr., ComDarina the Effective-

ness of Software Testinu Strateuies, University of Maryland,

Technical Report TR-1501, May 1985

3Basili, V. R., and R. W. Selby, Jr., "Four Applications

of a Software Data Collection and Analysis Methodology," Pro-

ceedinus of the NATO Advanced_Studv Institute, August 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-

perimentation in Software Engineering," IEEE Transactions on

Software Enuineerinu, July 1986

5Basili, V. and R. Selby, Jr., "Comparing the Effective-

ness of Software Testing Strategies," IEEE Transactions on

Software E_qineerinu, December 1987

2Basiii, V.IR._ and D. M. Weiss, A Method01ouv for Collectina

Valid Software Enuineerinu Data, University of Maryland,

Technical Report TRZi2_-5,_December1982 _

3Basili, v. R., and D. M. weiss, "AMethodol0gy for Collect-

ing Valid Software Engineering Data." _EEE Transactions on

Software Enuineerina, November 1984

9913

B-8

iBasili, V. R., and M. V. Zelkowitz, "The Software Engi-

neering Laboratory: Objectives," Proceedinus Q(the Fif-

t@enth Annual Conference on Computer Personnel Research,

August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software

Measurement Experiment," Proceedinqs of the Software Life

Cycle Manaaement Workshop, September 1977

iBasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-

ware EngineerSng Laboratory," Proceedinqs of the Second Soft-

ware Life Cycle Manaaement Workshop, August 1978

iBasili, V. R., and M. V. Zelkowitz, "Measuring Software

Development Characteristics in the Local Environment," Com-

puters and Structures, August 1978, vol. I0

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale

Software Development," Proceedinas of the Third Interna-
tional Conference on Software Enaineerina. New York: IEEE

Computer Society Press, 1978

5Brophy, C., W. Agresti, and V. Basili, "Lessons Learned

in Use of Ada-Oriented Design Methods," Proceedinas of the

Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili,

"Lessons Learned in the Implementation Phase of a Large Ada
Project," Proceedinas o_ the Washinqton Ada Technical Con-

ference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and

Program Size," Computer Sciences Corporation, Technical Memo-

randum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques

for Resource Estimation," Computer Sciences Corporation,
Technical Memorandum, November 1982

3Card, D. N., "A Software Technolbgy Evaluation Program,"

Annals do XVIII Conuresso Nacional de Informatica,
October 1985

5Card, D., and W. Agresti, "Resolving the Software Science

Anomaly," The Journ_ Qf Systems and S0ftw_r_, 1987

6Card, D. N., and W. Agresti, "Measuring Software Design

Complexity," The Jo_rn_l of SYstems and Software, June 1988

9913

B-9

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan,

"A Software Engineering View of Flight Dynamics Analysis

System," Parts I and II, Computer Sciences Corporation,
Technical Memorandum, February 1984

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical

Study of Software Design Practices," IEEE Transactions on

Software Enaineerinu, February 1986

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteris-
tics of FORTRAN Modules," Computer Sciences Corporation,

Technical Memorandum, June 1984

5Card, D., F. McGarry, and G. Page, "Evaluating Software

Engineering Technologies," IEEE Transactions on Software

Enaineerinu, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for
Software Modularization," _roceedinus of the Eiuhth Interna-

tional Conference on Software Enaineerinu. New York: IEEE

Computer Society Press, 1985

IChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedinas of
the Fifth International Conference on Software Enuineerinu.

New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan,

"An Approach for Assessing Software Prototypes," ACM Software
Enuineerina Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software

Development Through Dynamic Variables," Proceedinus of the
_@venth International Computer Software and Applications

___. New York: IEEE Computer Society Press, 1983

5Doubleday, D., "ASAP: An Ada Static Source Code Analyzer

Program," University of Maryland, Technical Report TR-1895,

August 1987 (NOTE: i00 pages long)

6Godfrey, S., and C. Brophy, "Experiences in the Implemen-

tation of a Large Ada Project," Proceedinas of the 1988

Washinqton Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for

NAVPAK, Higher Order Software, Inc., TR-9, September 1977

(also designated SEL-77-005)

Jeffery, D. R., and V. Basili, Characterizinq Resource Data:
A Model for Loaical Association of Software Data, University

of Maryland, Technical Report TR-1848, May 1987

9913

B-10

6jeffery, D. R., and V. R. Basili, "Validating the TAME Re i

source Data Model," Proceedinas of the Tenth International

Conference on Software Enqineerinq, April 1988

5Mark, L., and H. D. Rombach, A Meta Information Base for

Software Enuineerinq, University of Maryland, Technical Re-
port TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software

Engineering Information Bases From Software Process and Prod-
uct Specifications," Proceedinqs of the 22n4 Annu_l H_w_ii

International Conference on System sciences, January 1989

5McGarry, F., and W. Agresti, "Measuring Ada for Software

Development in the Software Engineering Laboratory (SEL),"
Proceedinas of the 21st Annual Hawaii International Con-

ference on System Sciences, January 1988

7McGarry, F., L. Esker, and K. Quimby, "Evolution of Ada

Technology in a Production Software Environment," Proceedinas

of the Sixth Washinuton Ada SymDosium (WADAS), June 1989

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the

Impact of Computer Resource Quality on the Software Develop-

ment Process and Product," Proceedinas of the Hawaiian Inter-

national Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA
Software Research Technoloqy Workshop (Proceedings), March
1980

3page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-

perience With Independent Verification and Validation,"

Proceedinqs of the Eighth International Computer Software
and Applications Conf@rence, November 1984

5Ramsey, C., and V. R. Basili, An Evaluation of Expert Sys-

tems for Software Enqineerinq Manaaement, University of
Maryland, Technical Report TR-1708, September 1986

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process

Using Structural Coverage," Proceedinas of the Eiqhth Inter-

national Conference on Software Enqineer_nq. New York:
IEEE Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of

Software Structure on Maintainability," IEEE Transactions on

Software Enqineering, March 1987

9913
B-li

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment
of Maintenance: An Industrial Case Study," Proceedinas From

the Conference on Software Maintenance, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Prod-

uct Specifications: A Bas_S for Generating Customized SE

Information Bases," Proceedinqs of the 22nd Annual Hawaii

International Conference on System Sciences, January 1989

7Rombach, H' D., and B. T. Ulery, Establishina a Measure-

ment Based Maintenance Improvement Proqram; Lessons Learned

_J___t2___L, University of Maryland, Technical Report

TR-2252, May 1989

5Seidewitz, E., "General Object-Oriented Software Develop-

ment: Background and Experience," Proceedinus of the 21st
Hawaii International Conference on System Sciences, January

1988

6Seidewitz, E., "General Object-Oriented Software Develop-

ment with Ada: A Life Cycle Approach," Proceedinqs of the

CASE Technolouv Conference, April 1988

6Seidewitz, E., "ObjeCt-oriented Progran_ming in Smalltaik

and Ada," Procee_nus of the 1987 Conference on Obiect-
Oriented Proaramminu Systems. Lan0uaaes. and Apolications,

October 1987

4Seidewitz, E., and M. Stark, "Towards a General Object-
Oriented Software Development Methodology," Proceedinus of
the First International Symposium on Ada for the NASA Space

_, June i986

7Stark' M_ E. and E. W. Booth, "Using Adka to MaXimize

Verbatim Software Reuse," proceedinqs of TR_-Ada 1989,

October 1989

Stark, M., and E. Seidewitz, "Towards a General Object-
Oriented Ada Lifecycle, _ Proceedinqs of the Joint Ada Con-

ference, March 1987

7Sunazuka. T., and V. R. Basili, Intearatin0 Automated Sup-

port for a Software ManaGement Cycle Into the TAME System,
University of Maryland, Technical Report TR-2289, July 1989

Turner, C., and G. Caron, A C0mp_rison of RADC and NASA/SEL

Software Development Data, Data and Analysis Center for

Software, Special Publication, May 1981

9913

B-12

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-

dium, Data and Analysis Center for Software, Special Publi-

cation, April 1981

5Valett, J., and F. McGarry, "A Summary of Software Measure-

ment Experiences in the Software Engineering Laboratory,"

?roceedinqs of the 21st Annual Hawaii International Confer-
ence on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-

velopment by Analysis of Changes: Some Data From the Soft-

ware Engineering Laboratory," IEEE Transactions on Software
Enuineerinu, February 1985

5Wu, L., V. Basili, and K. Reed, "A Structure Coverage Tool

for Ada Software Systems," Proceedinus of the Joint Ada Con-

ference, March 1987

1Zelkowitz, M. V., "Resource Estimation for Medium Scale

Software Projects," Proceedinas of the Twelfth Conference on

_h@ Interface of Statistics and Computer Science. New York:

IEEE Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-

perimental Computer Science Research," Empirical Foundations
for Computer and Information Science (proceedings),

November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Proto-

typing: A Case Study," Proceedinus of the 26th Annual Tech-

nical Symposium of the Washinuton, D. C., Chapter of the ACM,
June 1987

6Zelkowitz, M. V., "Resource Utilization During Software

Development," Journal of Systems and Software, 1988

Zelkowitz, M. V., and V. R. Basiii, "Operational Aspects of

a Software Measurement Facility," Proceedinas of the Soft-
ware Life Cycle Manauement Workshop, September 1977

NOTES:

iThis article also appears in SEL-82-004, Collected Soft-

ware Enuineerina Papers: Volume I, July 1982.

2This article also appears in SEL-83-003, Collected Soft-

ware Enuin_erina Papers: Volume II, November 1983.

3This article also appears in SEL-85-003, Collected Soft-

ware Enuineerinu Papers: Volume iII, November 1985.

9913

B-13

4This article also appears in SEL-86'004, coilected Soft-

ware Enclneerinu PaDers: Volume IV, November 1986.

5This article also appears in SEL-87-009, Collected Soft-

ware Enuineerinu PaDers: Volume V, November 1987.

6This article also appears in SEL-88-002, Collected Soft-

ware Engineering Papers: Volume Vl, November 1988.

7This article also appears in SEL-89-006, Collected Soft-

ware Enuineerinu Papers: Volume VII, November 1989.

9913

B-14

